×

Pitman closeness domination in predictive density estimation for two-ordered normal means under \(\alpha \)-divergence loss. (English) Zbl 1446.62111

Summary: We consider Pitman closeness domination in predictive density estimation problems when the underlying loss metric is \(\alpha \)-divergence, \(\{D(\alpha)\}\), a loss introduced by I. Csiszar [Stud. Sci. Math. Hung. 2, 299–318 (1967; Zbl 0157.25802)]. The underlying distributions considered are normal location-scale models, including the distribution of the observables, the distribution of the variable, whose density is to be predicted, and the estimated predictive density which will be taken to be of the plug-in type. The scales may be known or unknown. Y.-T. Chang and W. E. Strawderman [J. Multivariate Anal. 128, 1–9 (2014; Zbl 1352.62042)] have derived a general expression for the \(\alpha \)-divergence loss in this setup, and have shown that it is a concave monotone function of quadratic loss, and also a function of the variances (predicand, and plug-in). We demonstrate \(\{D(\alpha)\}\) Pitman closeness domination of certain plug-in predictive densities over others for the entire class of metrics simultaneously when modified Pitman closeness domination holds in the related problem of estimating the mean. We also establish \(\{D(\alpha)\}\) Pitman closeness results for certain generalized Bayesian (best invariant) predictive density estimators. Examples of \(\{D(\alpha)\}\) Pitman closeness domination presented relate to the problem of estimating the predictive density of the variable with the larger mean. We also consider the case of two-ordered normal means with a known covariance matrix.

MSC:

62G07 Density estimation
62G30 Order statistics; empirical distribution functions
Full Text: DOI

References:

[1] Barlow, RE; Bartholomew, DJ; Bremner, JM; Brunk, HD, Statistical inference under order restrictions (1972), New York: Wiley, New York · Zbl 0246.62038
[2] Chang, Y-T; Fukuda, K.; Shinozaki, N., Estimation of two ordered normal means when a covariance matrix is known, Statistics, 5, 1095-1104 (2017) · Zbl 1381.62095 · doi:10.1080/02331888.2017.1293059
[3] Chang, Y-T; Oono, Y.; Shinozaki, N., Improved estimators for the common mean and ordered means of two normal distributions with ordered variances, Journal of Statistical Planning and Inference, 142, 2619-2628 (2012) · Zbl 1428.62104 · doi:10.1016/j.jspi.2012.03.006
[4] Chang, Y-T; Shinozaki, N., Estimation of two ordered normal means under modified Pitman nearness criterion, Annals of the Institute of Statistical Mathematics, 67, 863-883 (2015) · Zbl 1440.62084 · doi:10.1007/s10463-014-0479-4
[5] Chang, Y-T; Strawderman, WE, Stochastic domination in predictive density estimation for ordered normal means under \(\alpha \)-divergence loss, Journal of Multivariate Analysis, 128, 1-9 (2014) · Zbl 1352.62042 · doi:10.1016/j.jmva.2014.02.014
[6] Chou, J-P; Strawderman, WE, Minimax estimation of means of multivariate normal mixtures, Journal of Multivariate Analysis, 35, 141-150 (1990) · Zbl 0706.62053 · doi:10.1016/0047-259X(90)90021-9
[7] Cohen, A.; Sackrowitz, B., A discussion of some inference issues in order restricted models, Canadian Journal of Statistics, 32, 2, 199-205 (2004) · Zbl 1056.62041 · doi:10.2307/3315943
[8] Corcuera, JM; Giummolè, F., A generalized Bayes rule for prediction, Scandinavian Journal of Statistics, 26, 265-279 (1999) · Zbl 0934.62027 · doi:10.1111/1467-9469.00149
[9] Csiszàr, I., Information-type measures of difference of probability distributions and indirect observations, Studia Scientiarum Mathematicarum Hungarica, 2, 299-318 (1967) · Zbl 0157.25802
[10] Fernández, MA; Rueda, C.; Salvador, B., Parameter estimation under orthant restrictions, Canadian Journal of Statistics, 28, 1, 171-181 (2000) · Zbl 0963.62022 · doi:10.2307/3315225
[11] Fourdrinier, D.; Marchand, E.; Righi, A.; Strawderman, WE, On improved predictive density with parametric constraints, Electronic Journal of Statistics, 5, 172-191 (2011) · Zbl 1274.62079 · doi:10.1214/11-EJS603
[12] Fourdrinier, D.; Strawderman, WE; Wells, MT, Shrinkage estimation (2018), Berlin: Spring series in Statistics, Berlin · Zbl 1411.62011 · doi:10.1007/978-3-030-02185-6
[13] Graybill, FA; Deal, RB, Combining unbiased estimators, Biometrics, 15, 543-550 (1959) · Zbl 0096.34503 · doi:10.2307/2527652
[14] Gupta, RD; Singh, H., Pitman nearness comparisons of estimates of two ordered normal means, Australian Journal of Statistics, 34, 3, 407-414 (1992) · Zbl 0767.62027 · doi:10.1111/j.1467-842X.1992.tb01056.x
[15] Hwang, JT; Peddada, SD, Confidence interval estimation subject to order restrictions, The Annals of Statistics, 22, 1, 67-93 (1994) · Zbl 0796.62033 · doi:10.1214/aos/1176325358
[16] Keating, JP; Mason, RL; Sen, PK, Pitman’s measure of closeness: A comparison of statistical estimators (1993), Philadelphia: SIAM, Philadelphia · Zbl 0779.62019 · doi:10.1137/1.9781611971576
[17] Kubokawa, T., Closer estimation of a common mean in the sense of Pitman, Annals of the Institute of Statistical Mathematics, 41, 3, 477-484 (1989) · Zbl 0702.62023 · doi:10.1007/BF00050663
[18] Lee, CIC, The quadratic loss of isotonic regression under normality, The Annals of Statistics, 9, 3, 686-688 (1981) · Zbl 0477.62015 · doi:10.1214/aos/1176345475
[19] Maruyama, Y., & Strawderman, W. E. (2012). Bayesian predictive densities for linear regression models under \(\alpha \)-divergence loss: Some results and open problems. Contemporary Developments in Bayesian Analysis and Statistical Decision Theory: A Festschrift for William E. Strawderman. Institute of Mathematical Statistics. vol 8, pp 42-56 · Zbl 1326.62021
[20] Nayak, TK, Estimation of location and scale parameters using generalized Pitman nearness criterion, Journal of Statistical Planning and Inference, 24, 259-268 (1990) · Zbl 0685.62031 · doi:10.1016/0378-3758(90)90046-W
[21] Oono, Y.; Shinozaki, N., Estimation of two order restricted normal means with unknown and possibly unequal variances, Journal of Statistical Planning and Inference, 131, 2, 349-363 (2005) · Zbl 1061.62033 · doi:10.1016/j.jspi.2004.02.007
[22] Pitman, EJG, The closest estimates of statistical parameters, Proceedings of the Cambridge Philosophical Society, 33, 212-222 (1937) · JFM 63.0515.03 · doi:10.1017/S0305004100019563
[23] Robertson, T.; Wright, FT; Dykstra, RL, Order restricted statistical inference (1988), New York: Wiley, New York · Zbl 0645.62028
[24] Shinozaki, N.; Chang, Y-T, A comparison of maximum likelihood and the best unbiased estimators in the estimation of linear combinations of positive normal means, Statistics and Decisions, 17, 125-136 (1999) · Zbl 0941.62024
[25] Silvapulle, MJ; Sen, PK, Constrained statistical inference (2004), New York: Wiley, New York
[26] van Eeden, C., Restricted parameter space estimation problems. Lecture notes in statistics 188 (2006), Berlin: Springer, Berlin · Zbl 1160.62018 · doi:10.1007/978-0-387-48809-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.