×

The rotation number integer quantization effect in braid groups. (English. Russian original) Zbl 1442.37061

Proc. Steklov Inst. Math. 305, 182-194 (2019); translation from Tr. Mat. Inst. Steklova 305, 197-210 (2019).
The Artin braid group \(B_n\) on \(n\) strands is defined by the presentation \[ B_n = \langle \sigma_1, \sigma_2, \ldots, \sigma_{n-1} \mid\sigma_i \sigma_j = \sigma_j \sigma_i, ~|i-j| > 1;~~\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \rangle. \] The Nielsen-Thurston theory of surface automorphisms, as well as the theory of orderable groups, produces actions of braid groups on the circle and real line leading to the translation/rotation number of braids. The twist number \(\tau_b\) for braids can be defined in the following way.
There exists a unique function \(\tau_b : B_n \to \mathbb{R}\) with the following properties:
(i) \(\sup_{\alpha,\beta\in B_n} |\tau_b(\alpha \beta) - \tau_b(\alpha) - \tau_b(\beta)| = 1\);
(ii) for all \(\beta \in B_n\) and \(k \in \mathbb{Z}\), we have \(\tau_b(\beta^k) = k \tau_b(\beta)\);
(iii) \(\tau_b(\beta) \geq 0\) whenever \(\beta\) can be written in Artin’s generators and their inverses with no occurrence of \(\sigma_1^{-1}\).
The level sets \(\tau_b^{-1}(x)\) are called layers. If \((r, s)\) is an interval in \(\mathbb{R}\), then \(\tau_b^{-1}(r, s) = \bigcup_{x \in (r,s)} \tau_b^{-1}(x)\).
In the first theorem the author proves that the layers \(\tau_b^{-1}(x)\) separate the Cayley graph \(\mathrm{Cay}_{\sigma}(B_n)\), \(n \geq 3\), if and only if \(x\) is an integer.
This theorem has the following refinement. If \(z\) is an integer, then:
(i) the layers \(\tau_b^{-1}(x)\) separate \(\mathrm{Cay}_{\sigma}(B_n)\) whenever \(n \geq 2\). Moreover, the distance between the sets \(\tau_b^{-1}(-\infty, z)\) and \(\tau_b^{-1}(z, \infty)\) in \(\mathrm{Cay}_{\sigma}(B_n)\) is at least \(n\);
(ii) the set \(\tau_b^{-1}(z, z+1)\), which is the union of the layers \(\tau_b^{-1}(x)\) with \(x \in (z, z+1)\), does not separate \(\mathrm{Cay}_{\sigma}(B_n)\) whenever \(n \geq 3\).
Further, the following statement shows that certain “noninteger” layers are extremely “thin” in a certain sense. If \(n \geq 2\), \(p\) and \(q\) are coprime integers, and \(q \in \{n-1, n\}\), then no edge of \(\mathrm{Cay}_{\sigma}(B_n)\) has both edges in the layer \(\tau_b^{-1}(p/q)\).

MSC:

37E45 Rotation numbers and vectors
37E30 Dynamical systems involving homeomorphisms and diffeomorphisms of planes and surfaces
37E10 Dynamical systems involving maps of the circle
20F36 Braid groups; Artin groups
Full Text: DOI

References:

[1] V. I. Arnold, Additional Chapters of the Theory of Ordinary Differential Equations (Nauka, Moscow, 1978). Engl. transl.: Geometrical Methods in the Theory of Ordinary Differential Equations (Springer, New York, 1988), 2nd ed., Grundl. Math. Wiss. 250. · Zbl 0956.34503
[2] E. Artin, “Theory of braids,” Ann. Math., Ser. 2., 48(1), 101-126 (1947). · Zbl 0030.17703 · doi:10.2307/1969218
[3] J. A. Baldwin and J. B. Etnyre, “Admissible transverse surgery does not preserve tightness,” Math. Ann. 357(2), 441-468 (2013). · Zbl 1280.57017 · doi:10.1007/s00208-013-0911-8
[4] J. S. Birman, Braids, Links, and Mapping Class Groups (Princeton Univ. Press, Princeton, NJ, 1974), Ann. Math. Stud. 82.
[5] J. S. Birman, V. Gebhardt, and J. González-Meneses, “Conjugacy in Garside groups. III: Periodic braids,” J. Algebra 316(2), 746-776 (2007). · Zbl 1165.20031 · doi:10.1016/j.jalgebra.2007.02.002
[6] Ph. L. Boyland, “Bifurcations of circle maps: Arnol’d tongues, bistability and rotation intervals,” Commun. Math. Phys. 106, 353-381 (1986). · Zbl 0612.58032 · doi:10.1007/BF01207252
[7] M. G. Brin, “The algebra of strand splitting. I: A braided version of Thompson’s group <Emphasis Type=”Italic“>V,” J. Group Theory 10(6), 757-788 (2007). · Zbl 1169.20021 · doi:10.1515/JGT.2007.055
[8] V. M. Buchstaber and A. A. Glutsyuk, “On determinants of modified Bessel functions and entire solutions of double confluent Heun equations,” Nonlinearity 29(12), 3857-3870 (2016). · Zbl 1356.33004 · doi:10.1088/0951-7715/29/12/3857
[9] V. M. Buchstaber and A. A. Glutsyuk, “On monodromy eigenfunctions of Heun equations and boundaries of phase-lock areas in a model of overdamped Josephson effect,” Proc. Steklov Inst. Math. 297, 50-89 (2017) [transl. from Tr. Mat. Inst. Steklova 297, 62-104 (2017)]. · Zbl 1377.34108 · doi:10.1134/S0081543817040046
[10] V. M. Buchstaber, O. V. Karpov, and S. I. Tertychniy, “Electrodynamic properties of a Josephson junction biased with a sequence of delta-function pulses,” J. Exp. Theor. Phys. 93(6), 1280-1287 (2001) [transl. from Zh. Eksp. Teor. Fiz. 120 (6), 1478-1485 (2001)]. · doi:10.1134/1.1435750
[11] V. M. Buchstaber, O. V. Karpov, and S. I. Tertychnyi, “On properties of the differential equation describing the dynamics of an overdamped Josephson junction,” Russ. Math. Surv. 59(2), 377-378 (2004) [transl. from Usp. Mat. Nauk 59 (2), 187-188 (2004)]. · Zbl 1113.34302 · doi:10.1070/RM2004v059n02ABEH000725
[12] V. M. Buchstaber, O. V. Karpov, and S. I. Tertychnyi, “Features of the dynamics of a Josephson junction biased by a sinusoidal microwave current,” J. Commun. Technol. Electron. 51(6), 713-718 (2006) [transl. from Radiotekh. Elektron. 51 (6), 757-762 (2006)]. · doi:10.1134/S1064226906060155
[13] V. M. Buchstaber, O. V. Karpov, and S. I. Tertychniy, “Rotation number quantization effect,” Theor. Math. Phys. 162(2), 211-221 (2010) [transl. from Teor. Mat. Fiz. 162 (2), 254-265 (2010)]. · Zbl 1196.81132 · doi:10.1007/s11232-010-0016-4
[14] V. M. Buchstaber, O. V. Karpov, and S. I. Tertychnyi, “A system on a torus modelling the dynamics of a Josephson junction,” Russ. Math. Surv. 67(1), 178-180 (2012) [transl. from Usp. Mat. Nauk 67 (1), 181-182 (2012)]. · Zbl 1248.34062 · doi:10.1070/RM2012v067n01ABEH004781
[15] V. M. Buchstaber and S. I. Tertychniy, “Explicit solution family for the equation of the resistively shunted Josephson junction model,” Theor. Math. Phys. 176(2), 965-986 (2013) [transl. from Teor. Mat. Fiz. 176 (2), 163-188 (2013)]. · Zbl 1291.34002 · doi:10.1007/s11232-013-0085-2
[16] V. M. Buchstaber and S. I. Tertychnyi, “Holomorphic solutions of the double confluent Heun equation associated with the RSJ model of the Josephson junction,” Theor. Math. Phys. 182(3), 329-355 (2015) [transl. from Teor. Mat. Fiz. 182 (3), 373-404 (2015)]. · Zbl 1326.82028 · doi:10.1007/s11232-015-0267-1
[17] V. M. Bukhshtaber and S. I. Tertychnyi, “On a remarkable sequence of Bessel matrices,” Math. Notes 98(5), 714-724 (2015) [transl. from Mat. Zametki 98 (5), 651-663 (2015)]. · Zbl 1345.15008 · doi:10.1134/S0001434615110024
[18] V. M. Buchstaber and S. I. Tertychnyi, “Automorphisms of the solution spaces of special double-confluent Heun equations,” Funct. Anal. Appl. 50(3), 176-192 (2016) [transl. from Funkts. Anal. Prilozh. 50 (3), 12-33 (2016)]. · Zbl 1360.34176 · doi:10.1007/s10688-016-0146-z
[19] Calegari, D., Circular groups, planar groups, and the Euler class, No. 7, 431-491 (2004), Coventry · Zbl 1181.57022
[20] D. Calegari and A. Walker, “Ziggurats and rotation numbers,” J. Mod. Dyn. 5(4), 711-746 (2011). · Zbl 1286.37045
[21] A. J. Casson and S. A. Bleiler, Automorphisms of Surfaces after Nielsen and Thurston (Cambridge Univ. Press, Cambridge, 1988), LMS Stud. Texts 9. · Zbl 0649.57008 · doi:10.1017/CBO9780511623912
[22] P. Dehornoy, “Braid groups and left distributive operations,” Trans. Am. Math. Soc. 345(1), 115-150 (1994). · Zbl 0837.20048 · doi:10.1090/S0002-9947-1994-1214782-4
[23] P. Dehornoy, “Geometric presentations for Thompson’s groups,” J. Pure Appl. Algebra 203(1-3), 1-44 (2005). · Zbl 1150.20016 · doi:10.1016/j.jpaa.2005.02.012
[24] P. Dehornoy, “The group of parenthesized braids,” Adv. Math. 205(2), 354-409 (2006). · Zbl 1160.20027 · doi:10.1016/j.aim.2005.07.012
[25] P. Dehornoy, I. Dynnikov, D. Rolfsen, and B. Wiest, Why Are Braids Orderable? (Soc. Math. France, Paris, 2002), Panor. Synth. 14. · Zbl 1048.20021
[26] I. A. Dynnikov and V. A. Shastin, “On independence of some pseudocharacters on braid groups,” St. Petersburg Math. J. 24(6), 863-876 (2013) [transl. from Algebra Anal. 24 (6), 21-41 (2012)]. · Zbl 1279.20045 · doi:10.1090/S1061-0022-2013-01270-2
[27] Epstein, D. B A.; Cannon, J. W.; Holt, D. F.; Levy, S. V F.; Paterson, M. S.; Thurston, W. P., Braid groups, 181-209 (1992), Boston, MA · Zbl 0764.20017 · doi:10.1201/9781439865699
[28] Etnyre, J. B.; Van Horn-Morris, J., Monoids in the mapping class group, No. 19, 319-365 (2015), Coventry · Zbl 1337.57057
[29] P. Feller and D. Hubbard, “Braids with as many full twists as strands realize the braid index,” J. Topology 12(4), 1069-1092 (2019); arXiv: 1708.04998 [math.GT]. · Zbl 1450.57001 · doi:10.1112/topo.12112
[30] R. Fenn, M. T. Greene, D. Rolfsen, C. Rourke, and B. Wiest, “Ordering the braid groups,” Pac. J. Math. 191(1), 49-74 (1999). · Zbl 1009.20042 · doi:10.2140/pjm.1999.191.49
[31] J. Franks, “Rotation numbers and instability sets,” Bull. Am. Math. Soc., New Ser. 40(3), 263-279 (2003). · Zbl 1060.37036 · doi:10.1090/S0273-0979-03-00983-2
[32] L. Funar and C. Kapoudjian, “On a universal mapping class group of genus zero,” Geom. Funct. Anal. 14(5), 965-1012 (2004). · Zbl 1078.57021 · doi:10.1007/s00039-004-0480-9
[33] L. Funar and C. Kapoudjian, “The braided Ptolemy-Thompson group is finitely presented,” Geom. Topol. 12(1), 475-530 (2008). · Zbl 1187.20029 · doi:10.2140/gt.2008.12.475
[34] Gabai, D., Problems in foliations and laminations (1997), Providence, RI · Zbl 0888.57025
[35] D. Gabai and U. Oertel, “Essential laminations in 3-manifolds,” Ann. Math., Ser. 2, 130(1), 41-73 (1989). · Zbl 0685.57007 · doi:10.2307/1971476
[36] É. Ghys, “Groups acting on the circle,” Enseign. Math., Sér. II 47(3-4), 329-407 (2001). · Zbl 1044.37033
[37] A. A. Glutsyuk, V. A. Kleptsyn, D. A. Filimonov, and I. V. Schurov, “On the adjacency quantization in an equation modeling the Josephson effect,” Funct. Anal. Appl. 48(4), 272-285 (2014) [transl. from Funkts. Anal. Prilozh. 48 (4), 47-64 (2014)]. · Zbl 1370.37143 · doi:10.1007/s10688-014-0070-z
[38] M. Hedden and T. E. Mark, “Floer homology and fractional Dehn twists,” Adv. Math. 324, 1-39 (2018). · Zbl 1383.57017 · doi:10.1016/j.aim.2017.11.008
[39] K. Honda, W. H. Kazez, and G. Matić, “Right-veering diffeomorphisms of compact surfaces with boundary,” Invent. Math. 169(2), 427-449 (2007). · Zbl 1167.57008 · doi:10.1007/s00222-007-0051-4
[40] K. Honda, W. H. Kazez, and G. Matić, “Right-veering diffeomorphisms of compact surfaces with boundary. II,” Geom. Topol. 12(4), 2057-2094 (2008). · Zbl 1170.57013 · doi:10.2140/gt.2008.12.2057
[41] T. Ito and K. Kawamuro, “Essential open book foliations and fractional Dehn twist coefficient,” Geom. Dedicata 187, 17-67 (2017). · Zbl 1362.57026 · doi:10.1007/s10711-016-0188-7
[42] T. Ito and K. Kawamuro, “On the fractional Dehn twist coefficients of branched coverings,” arXiv: 1807.04398 [math.GT]. · Zbl 1362.57026
[43] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems (Cambridge Univ. Press, Cambridge, 1995). · Zbl 0878.58020 · doi:10.1017/CBO9780511809187
[44] W. Kazez and R. Roberts, “Fractional Dehn twists in knot theory and contact topology,” Algebr. Geom. Topol. 13(6), 3603-3637 (2013). · Zbl 1278.57025 · doi:10.2140/agt.2013.13.3603
[45] W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations (Interscience, New York, 1966). · Zbl 0138.25604
[46] A. V. Malyutin, “Orderings on braid groups, operations on closed braids, and confirmation of Menasco’s conjectures,” J. Math. Sci. 113(6), 822-826 (2003) [transl. from Zap. Nauchn. Semin. POMI 267, 163-169 (2000)]. · Zbl 1030.57017 · doi:10.1023/A:1021291403512
[47] A. V. Malyutin, “Twist number of (closed) braids,” St. Petersburg Math. J. 16(5), 791-813 (2005) [transl. from Algebra Anal. 16 (5), 59-91 (2004)]. · Zbl 1088.57008 · doi:10.1090/S1061-0022-05-00879-4
[48] A. V. Malyutin, “Classification of the group actions on the real line and circle,” St. Petersburg Math. J. 19(2), 279-296 (2008) [transl. from Algebra Anal. 19 (2), 156-182 (2007)]. · Zbl 1209.37009 · doi:10.1090/S1061-0022-08-00999-0
[49] A. V. Malyutin, “Criteria of prime links in terms of pseudo-characters,” J. Math. Sci. 161(3), 437-442 (2009) [transl. from Zap. Nauchn. Semin. POMI 353, 150-161 (2008)]. · Zbl 1204.57006 · doi:10.1007/s10958-009-9572-2
[50] A. V. Malyutin, “Pseudocharacters of braid groups and prime links,” St. Petersburg Math. J. 21(2), 245-259 (2010) [transl. from Algebra Anal. 21 (2), 113-135 (2009)]. · Zbl 1220.20030 · doi:10.1090/S1061-0022-10-01093-9
[51] A. V. Malyutin, “Operators in the spaces of pseudocharacters of braid groups,” St. Petersburg Math. J. 21(2), 261-280 (2010) [transl. from Algebra Anal. 21 (2), 136-165 (2009)]. · Zbl 1220.20031 · doi:10.1090/S1061-0022-10-01094-0
[52] A. V. Malyutin, “Transformation formulas for pseudo-characters of braid groups,” J. Math. Sci. 175(5), 574-585 (2011) [transl. from Zap. Nauchn. Semin. POMI 372, 128-148 (2009)]. · Zbl 1283.20038 · doi:10.1007/s10958-011-0372-0
[53] A. V. Malyutin, “Quasimorphisms, random walks, and transient subsets in countable groups,” J. Math. Sci. 181(6), 871-885 (2012) [repr. from Zap. Nauchn. Semin. POMI 390, 210-236 (2011)]. · Zbl 1258.60033 · doi:10.1007/s10958-012-0721-7
[54] A. V. Malyutin and N. Yu. Netsvetaev, “Dehornoy’s ordering on the braid group and braid moves,” St. Petersburg Math. J. 15(3), 437-448 (2004) [transl. from Algebra Anal. 15 (3), 170-187 (2003)]. · Zbl 1072.57007 · doi:10.1090/S1061-0022-04-00816-7
[55] O. Plamenevskaya, “Braid monodromy, orderings and transverse invariants,” Algebr. Geom. Topol. 18(6), 3691-3718 (2018). · Zbl 1408.57016 · doi:10.2140/agt.2018.18.3691
[56] H. Poincaré, “Mémoire sur les courbes définies par une équation différentielle,” J. Math. 7, 375-422 (1881); 8, 251-296 (1882); republ. in Œuvres de Henri Poincaré (Gauthier-Villars, Paris, 1928), Vol. 1, pp. 3-84. · JFM 13.0591.01
[57] “‘Problems in low-dimensional topology (ed. by R. Kirby),” in Geometric Topology: Georgia Int. Topol. Conf., Athens, GA, 1993 (Am. Math. Soc., Providence, RI, 1997), AMS/IP Stud. Adv. Math. 2 (Part 2), pp. 35-473. · Zbl 0888.57014
[58] R. Roberts, “Taut foliations in punctured surface bundles. I,” Proc. London Math. Soc., Ser. 3, 82(3), 747-768 (2001). · Zbl 1034.57017 · doi:10.1112/plms/82.3.747
[59] R. Roberts, “Taut foliations in punctured surface bundles. II,” Proc. London Math. Soc., Ser. 3, 83(2), 443-471 (2001). · Zbl 1034.57018 · doi:10.1112/plms/83.2.443
[60] H. Short and B. Wiest, “Orderings of mapping class groups after Thurston,” Enseign. Math., Sér. II 46(3-4), 279-312 (2000). · Zbl 1023.57013
[61] A. M. Vershik and A. V. Malyutin, “Boundaries of braid groups and the Markov-Ivanovsky normal form,” Izv. Math. 72(6), 1161-1186 (2008) [transl. from Izv. Ross. Akad. Nauk, Ser. Mat. 72 (6), 105-132 (2008)]. · Zbl 1155.60033 · doi:10.1070/IM2008v072n06ABEH002432
[62] Vershinin, V., Around braids, No. 35, 179-228 (2018), Hackensack, NJ · Zbl 1483.20070 · doi:10.1142/9789813226579_0003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.