×

The multiscale hybrid-mixed method for the Maxwell equations in heterogeneous media. (English) Zbl 1412.65188

Summary: In this work, we address time dependent wave propagation problems with strong multiscale features (in space and time). Our goal is to design a family of innovative high performance numerical methods suitable to the simulation of such multiscale problems. Particularly, we extend the multiscale hybrid-mixed (MHM) finite element method for the two- and three-dimensional time-dependent Maxwell equations with heterogeneous coefficients. The MHM method arises from the decomposition of the exact electric and magnetic fields in terms of the solutions of locally independent Maxwell problems tied together with a one-field formulation on top of a coarse-mesh skeleton. The multiscale basis functions, which are responsible for upscaling, are driven by local Maxwell problems with tangential component of the magnetic field prescribed on faces. A high-order discontinuous Galerkin method in space combined with a second-order explicit leap-frog scheme in time discretizes the local problems. This makes the MHM method effective and yields a staggered algorithm within a “divide-and-conquer” framework. Several two-dimensional numerical tests assess the optimal convergence of the MHM method and its capacity to preserve the energy principle, as well as its accuracy to solve heterogeneous media problems on coarse meshes.

MSC:

65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35Q61 Maxwell equations
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
Full Text: DOI

References:

[1] A. Abdulle, W. E, B. Engquist, and E. Vanden-Eijnden, {\it The heterogeneous multiscale method}, Numer. Math., 21 (2012), pp. 1-87. · Zbl 1255.65224
[2] A. Abdulle, M. J. Grote, and C. Stohrer, {\it Finite element heterogeneous multiscale method for the wave equation: Long time effects}, Multiscale Model. Simul., 12 (2014), pp. 1230-1257. · Zbl 1315.65084
[3] C. Amroucche, C. Bernadi, M. Dauge, and G. V., {\it Vector Potential in Three Dimensional Nonsmooth Domains}, Math. Methods Appl. Sci., 21 (1998), pp. 823-864. · Zbl 0914.35094
[4] R. Araya, C. Harder, D. Paredes, and F. Valentin, {\it Multiscale hybrid-mixed methods}, SIAM J. Numer. Anal., 51 (2013), pp. 3505-3531. · Zbl 1296.65152
[5] R. Araya, C. Harder, A. Poza, and F. Valentin, {\it Multiscale hybrid-mixed method for the Stokes and Brinkman equations-the method}, Comput. Methods Appl. Mech. Engrg., 324 (2017), pp. 29-53. · Zbl 1439.76046
[6] T. Arbogast, {\it Analysis of a two-scale locally conservative subgrid upscaling for elliptic problems}, SIAM J. Numer. Anal., 42 (2004), pp. 576-598. · Zbl 1078.65092
[7] T. Arbogast, G. Pencheva, M. F. Wheeler, and I. Yotov, {\it A multiscale mortar mixed finite element method}, SIAM Multiscale Model. Simul., 6 (2007), pp. 319-346. · Zbl 1322.76039
[8] F. Assous, P. Ciarlet, and S. Labrunie, {\it Mathematical Foundations of Computational Electromagnetism}, Appl. Math. Sci. 198, Springer, Cham, 2018. · Zbl 1452.78001
[9] I. Babuska and E. Osborn, {\it Generalized finite element methods: Their performance and their relation to mixed methods}, SIAM J. Numer. Anal., 20 (1983), pp. 510-536. · Zbl 0528.65046
[10] S. Badia and R. Codina, {\it A nodal-based finite element approximation of the maxwell problem suitable for singular solutions}, SIAM J. Numer. Anal., 55 (2012), pp. 398-417. · Zbl 1247.78034
[11] K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, {\it Periodic nanostructures for photonics}, Phys. Rep., 444 (2007), pp. 101-202.
[12] A. Catella, V. Dolean, and S. Lanteri, {\it An implicit DGTD method for solving the two-dimensional Maxwell equations on unstructured triangular meshes}, IEEE Trans. Magn., 44 (2008), pp. 1250-1253.
[13] A. Christophe, S. Descombes, and S. Lanteri, {\it An implicit hybridized discontinuous Galerkin method for the 3D time-domain Maxwell equations}, Appl. Math. Comput., 319 (2018), pp. 395-408. · Zbl 1426.78031
[14] P. Ciarlet, {\it Linear and Nonlinear Functional Analysis with Applications}, SIAM, Philadelphia, 2013. · Zbl 1293.46001
[15] P. Ciarlet and F. Assous, {\it Modéles et méthodes pour les équations de Maxwell}, ENSTA, 2002.
[16] B. Cockburn and J. Gopalakrishnan, {\it A characterization of hybridized mixed methods for second order elliptic problems}, SIAM J. Numer. Anal., 42 (2004), pp. 283-301. · Zbl 1084.65113
[17] B. Cockburn, F. Li, and C. W. Shu, {\it Locally divergence-free discontinuous galerkin methods for the Maxwell equations}, J. Comput. Phys., 194 (2004), pp. 588-610. · Zbl 1049.78019
[18] F. Collino, T. Fouquet, and P. Joly, {\it Conservative space-time mesh refinement methods for the FDTD solution of Maxwells equations}, J. Comput. Phys., 211 (2006), pp. 9-35. · Zbl 1107.78015
[19] M. Costabel, M. Dauge, and S. Nicaise, {\it Singularities of Maxwell interface problems}, RAIRO Model. Math. Anal. Numer., 33 (1999), pp. 627-649. · Zbl 0937.78003
[20] R. Dautray and J.-L. Lions, {\it Mathematical Analysis and Numerical Method for Science and Technology, Volume} 5: {\it Evolution Problems} I, Springer, New York, 2000. · Zbl 0944.47002
[21] S. Descombes, C. Durochat, S. Lanteri, L. Moya, C. Scheid, and J. Viquerat, {\it Recent advances on a DGTD method for time-domain electromagnetics}, Photonics Nanostructures Fundamentals Appl., 11 (2013), pp. 291-302.
[22] J. Diaz and M. J. Grote, {\it Energy conserving explicit local time-stepping for second-order wave equations}, SIAM J. Sci. Comput., 31 (2009), pp. 1985-2014. · Zbl 1195.65131
[23] J. Diaz and M. Grote, {\it Multi-level explicit local time-stepping methods for second-order wave equations}, Comput. Methods Appl. Mech. Engrg., 291 (2015), pp. 1985-2014. · Zbl 1195.65131
[24] Y. Efendiev and X. H. Wu, {\it Multiscale finite element problems with highly oscillatory coefficients}, Numer. Math., 90 (2002), pp. 459-486. · Zbl 0997.65129
[25] L. Fezoui, S. Lanteri, S. Lohrengel, and S. Piperno, {\it Convergence and stability of a discontinuous Galerkin time-domain method for the} 3{\it D heterogeneous Maxwell equations on unstructured meshes}, ESAIM Math. Model. Numer. Anal., 39 (2005), pp. 1149-1176. · Zbl 1094.78008
[26] J. Gopalakrishnan, S. Moskow, and F. Santosa, {\it Asymptotic and numerical techniques for resonances of thin photonic structures}, SIAM J. Appl. Math., 69 (2014), pp. 37-63. · Zbl 1159.78010
[27] J. Gopalakrishnan, I. Muga, and N. Olivares, {\it Dispersive and dissipative errors in the DPG method with scaled norms for Helmholtz equation}, SIAM J. Sci. Comput., 36 (2014), pp. 20-39. · Zbl 1290.65113
[28] M. J. Grote, M. Mehlin, and T. Mitkova, {\it Runge-Kutta-based explicit local time-stepping methods for wave propagation}, SIAM J. Sci. Comput., 37 (2015), pp. A747-A775. · Zbl 1320.65140
[29] M. J. Grote and T. Mitkova, {\it Explicit local time-stepping methods for Maxwel’s equations}, J. Comput. Appl. Math., 234 (2010), pp. 3283-3302. · Zbl 1210.78026
[30] C. Harder, A. L. Madureira, and F. Valentin, {\it A hybrid-mixed method for elasticity}, ESAIM: Math. Model. Numer. Anal., 50 (2016), pp. 311-336. · Zbl 1381.74192
[31] C. Harder, D. Paredes, and F. Valentin, {\it A family of multiscale hybrid-mixed finite element methods for the Darcy equation with rough coefficients}, J. Comput. Phys., 245 (2013), pp. 107-130. · Zbl 1349.76214
[32] C. Harder, D. Paredes, and F. Valentin, {\it On a multiscale hybrid-mixed method for advective-reactive dominated problems with heterogenous coefficients}, SIAM Multiscale Model. Simul., 13 (2015), pp. 491-518. · Zbl 1317.65222
[33] C. Harder and F. Valentin, {\it Foundations of the MHM method}, in Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, G. R. Barrenechea, F. Brezzi, A. Cangiani, and E. H. Georgoulis, eds., Lect. Notes Comput. Sci. Eng. 114, Springer, New York, pp. 401-433, 2016. · Zbl 1357.65261
[34] J. S. Hesthaven, {\it High-order accurate methods in time-domain computational electromagnetics}, Adv. Imaging Electron Phys., 127 (2003), pp. 59-123.
[35] T. Y. Hou and X. Wu, {\it A multiscale finite element method for elliptic problems in composite materials and porous media.}, J. Comput. Phys., 134 (1997), pp. 169-189. · Zbl 0880.73065
[36] J. D. Joannopoulos, S. G. Johnson, and R. D. Meade, {\it Photonics crystals: Molding the Flow of Light}, Princenton University Press, Princeton, NJ, 2008. · Zbl 1144.78303
[37] S. Lanteri and C. Scheid, {\it Convergence of a discontinuous galerkin scheme for the mixed time domain Maxwell’s equations in dispersive media}, IMA J. Numer. Anal., 33 (2013), pp. 432-459. · Zbl 1277.78035
[38] R. Leger, J. Viquerat, C. Durochat, C. Scheid, and S. Lanteri, {\it A parallel non-conforming multi-element DGTD method for the simulation of electromagnetic wave interaction with metallic nanoparticles}, J. Comput. Appl. Math., 270 (2014), pp. 330-342. · Zbl 1374.78205
[39] L. Li, S. Lanteri, and R. Perrussel, {\it Numerical investigation of a high order hybridizable discontinuous Galerkin method for 2D time-harmonic Maxwell’s equations}, Int. J. Comput. Math. Electrical Electronic Eng., 32 (2013), pp. 1112-1138. · Zbl 1282.78007
[40] J. C. Nédélec, {\it Mixed finite elements in \({R}^3\)}, Numer. Math., 35 (1980), pp. 315-341. · Zbl 0419.65069
[41] N. C. Nguyen, J. Peraire, and B. Cockburn, {\it Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell’s equations}, J. Comput. Phys., 230 (2011), pp. 7151-7175. · Zbl 1230.78031
[42] D. Paredes, F. Valentin, and H. M. Versieux, {\it On the robustness of multiscale hybrid-mixed methods}, Math. Comp., 86 (2017), pp. 525-548. · Zbl 1355.65159
[43] W. Pereira and F. Valentin, {\it A locking-free MHM method for elasticity}, Proc. Ser. Brazilian Soc. Comput. Appl. Math., 5 (2017).
[44] D. Peterseim, {\it Eliminating the pollution effect in Helmholtz problems by local subscale correction}, Math. Comp., 86 (2017), pp. 1005-1036. · Zbl 1359.65265
[45] S. Piperno, {\it Symplectic local time stepping in non-dissipative DGTD methods applied to wave propagation problem}, ESAIM Math. Model. Numer. Anal., 40 (2006), pp. 815-841. · Zbl 1121.78014
[46] P. A. Raviart and J. M. Thomas, {\it Primal hybrid finite element methods for 2nd order elliptic equations}, Math. Comp., 31 (1977), pp. 391-413. · Zbl 0364.65082
[47] C. H. S. Santos and H. E. Hernández-Figueroa, {\it Designing novel photonic devices by bio-inspired computing}, IEEE Photonics Technol. Lett., 22 (2010), pp. 1177-1178.
[48] L. B. Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and A. Russo, {\it Basic principles of virtual element methods}, Math. Models Methods Appl. Sci., 23 (2013), pp. 199-214. · Zbl 1416.65433
[49] Y. Zhanga, L. Caob, Y. Fengd, and W. Wang, {\it A multiscale approach and a hybrid Fe-Be algorithm for heterogeneous scattering of Maxwell’s equations}, J. Comput. Appl. Math., 319 (2017), pp. 460-479. · Zbl 1362.78009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.