×

High dimensional finite elements for two-scale Maxwell wave equations. (English) Zbl 1435.78018

Summary: We develop an essentially optimal numerical method for solving two-scale Maxwell wave equations in a domain \(D \subset \mathbb{R}^d\). The problems depend on two scales: one macroscopic scale and one microscopic scale. Solving the macroscopic two-scale homogenized problem, we obtain the desired macroscopic and microscopic information. This problem depends on two variables in \(\mathbb{R}^d\), one for each scale that the original two-scale equation depends on, and is thus posed in a high dimensional tensorized domain. The straightforward full tensor product finite element (FE) method is exceedingly expensive. We develop the sparse tensor product FEs that solve this two-scale homogenized problem with essentially optimal number of degrees of freedom, i.e. the number of degrees of freedom differs by only a logarithmic multiplying factor from that required for solving a macroscopic problem in a domain in \(\mathbb{R}^d\) only, for obtaining a required level of accuracy. Numerical correctors are constructed from the FE solution. We derive a rate of convergence for the numerical corrector in terms of the microscopic scale and the FE mesh width. Numerical examples confirm our analysis.

MSC:

78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
78M40 Homogenization in optics and electromagnetic theory
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35Q60 PDEs in connection with optics and electromagnetic theory

References:

[1] Owhadi, H.; Zhang, L., Numerical homogenization of the acoustic wave equations with a continuum of scales, Comput. Methods Appl. Mech. Engrg., 198, 3-4, 397-406 (2008) · Zbl 1228.76122
[2] Jiang, L.; Efendiev, Y.; Ginting, V., Analysis of global multiscale finite element methods for wave equations with continuum spatial scales, Appl. Numer. Math., 60, 8, 862-876 (2010) · Zbl 1205.65270
[3] Hou, T. Y.; Wu, X.-H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134, 1, 169-189 (1997) · Zbl 0880.73065
[4] Efendiev, Y.; Hou, T. Y., (Multiscale Finite Element Methods: Theory and Applications. Multiscale Finite Element Methods: Theory and Applications, Surveys and Tutorials in the Applied Mathematical Sciences (2009), Springer) · Zbl 1163.65080
[5] E, W.; Engquist, B., The heterogeneous multiscale methods, Commun. Math. Sci., 1, 1, 87-132 (2003) · Zbl 1093.35012
[6] Abdulle, A.; E, W.; Engquist, B.; Vanden-Eijnden, E., The heterogeneous multiscale method, Acta Numer., 21, 1-87 (2012) · Zbl 1255.65224
[7] Engquist, B.; Holst, H.; Runborg, O., Multi-scale methods for wave propagation in heterogeneous media, Commun. Math. Sci., 9, 1, 33-56 (2011) · Zbl 1281.65110
[8] Abdulle, A.; Grote, M. J., Finite element heterogeneous multiscale method for the wave equation, Multiscale Model. Simul., 9, 2, 766-792 (2011) · Zbl 1298.65145
[9] Xia, B. X.; Hoang, V. H., High dimensional finite elements for multiscale wave equations, Multiscale Model. Simul., 12, 4, 1622-1666 (2014) · Zbl 1316.35025
[10] Xia, B. X.; Hoang, V. H., Sparse tensor finite elements for elastic wave equation with multiple scales, J. Comput. Appl. Math., 282, 179-214 (2015) · Zbl 1326.74125
[11] Hoang, V. H.; Schwab, C., High-dimensional finite elements for elliptic problems with multiple scales, Multiscale Model. Simul., 3, 1, 168-194 (2004) · Zbl 1074.65135
[12] Hoang, V. H., Sparse finite element method for periodic multiscale nonlinear monotone problems, Multiscale Model. Simul., 7, 3, 1042-1072 (2008) · Zbl 1185.35014
[13] Xia, B. X.; Hoang, V. H., High-dimensional finite element method for multiscale linear elasticity, IMA J. Numer. Anal., 35, 3, 1277-1314 (2015) · Zbl 1329.74293
[14] Zhang, Y.; Cao, L.; Feng, Y.; Wang, W., A multiscale approach and a hybrid FE-BE algorithm for heterogeneous scattering of maxwell’s equations, J. Comput. Appl. Math., 319, 460-479 (2017) · Zbl 1362.78009
[15] Ciarlet, P.; Fliss, S.; Stohrer, C., On the approximation of electromagnetic fields by edge finite elements. part 2: A heterogeneous multiscale method for maxwell’s equations, Comput. Math. Appl., 73, 9, 1900-1919 (2017) · Zbl 1379.78020
[16] Henning, P.; Ohlberger, M.; Verfürth, B., A new heterogeneous multiscale method for time-harmonic maxwell’s equations, SIAM J. Numer. Anal., 54, 6, 3493-3522 (2016) · Zbl 1357.35028
[17] Ohlberger, M., A posteriori error estimates for the heterogeneous multiscale finite element method for elliptic homogenization problems, Multiscale Model. Simul., 4, 1, 88-114 (2005) · Zbl 1090.65128
[18] Chu, V. T.; Hoang, V. H., High dimensional finite elements for multiscale maxwell equations, IMA J. Numer. Anal., 38, 227-270 (2018) · Zbl 1406.65108
[19] Monk, P., (Finite Element Methods for Maxwell’s Equations. Finite Element Methods for Maxwell’s Equations, Numerical Mathematics and Scientific Computation (2003), Oxford University Press: Oxford University Press New York), xiv+450 · Zbl 1024.78009
[20] Dupont, T., \( L^2\)-Estimates for galerkin methods for second order hyperbolic equations, SIAM J. Numer. Anal., 10, 5, 880-889 (1973) · Zbl 0239.65087
[21] Wloka, J., Partial Differential Equations (1987), Cambridge University Press · Zbl 0623.35006
[22] Nguetseng, G., A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20, 3, 608-623 (1989) · Zbl 0688.35007
[23] Allaire, G., Homogenization and two-scale convergence, SIAM J. Math. Anal., 23, 6, 1482-1518 (1992) · Zbl 0770.35005
[24] Allaire, G.; Briane, M., Multiscale convergence and reiterated homogenisation, Proceedings of the Royal Society of Edinburgh, Section: A Mathematics, 126, 2, 297-342 (1996) · Zbl 0866.35017
[25] Wellander, N.; Kristensson, G., Homogenization of the maxwell equations at fixed frequency, SIAM J. Appl. Math., 64, 1, 170-195 (2003) · Zbl 1042.35081
[26] Hiptmair, R., Finite elements in computational electromagnetism, Acta Numer., 11, 237-339 (2002) · Zbl 1123.78320
[27] Ciarlet, P. G., (The Finite Element Method for Elliptic Problems. The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications (1978), Elsevier Science) · Zbl 0383.65058
[28] Bungartz, H.-J.; Griebel, M., Sparse grids, Acta Numer., 13, 147-269 (2004) · Zbl 1118.65388
[29] Bensoussan, A.; Lions, J. L.; Papanicolau, G., (Asymptotic Analysis for Periodic Structures. Asymptotic Analysis for Periodic Structures, Studies in Mathematics and its Applications (1978), North-Holland Publishing Co.) · Zbl 0404.35001
[30] Jikov, V. V.; Kozlov, S. M.; Oleinik, O. A., Homogenization of Differential Operators and Integral Functionals (1994), Springer: Springer Berlin · Zbl 0838.35001
[31] Brahim-Otsmane, S.; Francfort, G. A.; Murat, F., Correctors for the homogenization of the wave and heat equations, J. Math. Pures Appl., 71, 3, 197-231 (1992) · Zbl 0837.35016
[32] Cioranescu, D.; Damlamian, A.; Griso, G., The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40, 4, 1585-1620 (2008) · Zbl 1167.49013
[33] Hoang, V. H.; Schwab, C., Analytic Regularity and polynomial approximation of stochastic, parametric elliptic multiscale PDEs, Anal. Appl., 11, 01, 1350001 (2013) · Zbl 1259.49059
[34] Griebel, M.; Oswald, P., Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems, Adv. Comput. Math., 4, 1, 171-206 (1995) · Zbl 0826.65099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.