×

Stochastically exponential stability and stabilization of uncertain linear hyperbolic PDE systems with Markov jumping parameters. (English) Zbl 1244.93167

Summary: This paper is concerned with the problem of robustly stochastically exponential stability and stabilization for a class of distributed parameter systems described by uncertain linear First-Order Hyperbolic Partial Differential Equations (FOHPDEs) with Markov jumping parameters, for which the manipulated input is distributed in space. Based on an Integral-type Stochastic Lyapunov Functional (ISLF), a sufficient condition of robustly stochastically exponential stability with a given decay rate is first derived in terms of Spatial Differential Linear Matrix Inequalities (SDLMIs). Then, an SDLMI approach to the design of robust stabilizing controllers via state feedback is developed from the resulting stability condition. Furthermore, using the finite difference method and the standard Linear Matrix Inequalities (LMIs) optimization techniques, recursive LMI algorithms for solving the SDLMIs in the analysis and synthesis are provided. Finally, a simulation example is given to demonstrate the effectiveness of the developed design method.

MSC:

93E12 Identification in stochastic control theory
93C20 Control/observation systems governed by partial differential equations
60J75 Jump processes (MSC2010)
93C05 Linear systems in control theory
93B35 Sensitivity (robustness)

Software:

LMI toolbox
Full Text: DOI

References:

[1] Abadir, K. M.; Magnus, J. R., Matrix algebra (2005), Cambridge University Press · Zbl 1084.15001
[2] Aksikas, I.; Fusman, A.; Forbes, J. F.; Winkin, J. J., LQ control design of a class of hyperbolic PDE systems: application to fixed-bed reactor, Automatica, 45, 6, 1542-1548 (2009) · Zbl 1166.49033
[3] Aksikas, I.; Winkin, J. J.; Dochain, D., Optimal LQ-feedback regulation of a nonisothermal plug flow reactor model by spectral factorization, IEEE Transactions on Automatic Control, 52, 7, 1179-1193 (2007) · Zbl 1366.93560
[4] Balas, M. J., Feedback control of linear diffusion processes, International Journal of Control, 29, 3, 523-534 (1979) · Zbl 0398.93027
[5] Bamieh, B.; Paganini, F.; Dahleh, M. A., Distributed control of spatially invariant systems, IEEE Transactions on Automatic Control, 47, 7, 1091-1107 (2002) · Zbl 1364.93363
[6] Banks, H. T.; Smith, R. S.; Wang, Y., Smart material structures: modeling, estimation and control (1996), Wiley: Wiley New York · Zbl 0882.93001
[7] Bolzern, P.; Colaneri, P.; Nicolao, De G., On almost sure stability of continuous-time Markov jump linear systems, Automatica, 42, 6, 983-988 (2006) · Zbl 1116.93049
[8] Boukas, E. K.; Liu, Z. K.; Al-Sunni, F., Guaranteed cost control of a Markov jump linear uncertain system using a time-multiplied cost function, Journal of Optimization Theory and Applications, 116, 1, 183-204 (2003) · Zbl 1046.93049
[9] Boukas, E. K.; Shi, P.; Benjelloun, K., On stabilization of uncertain linear systems with jump parameters, International Journal of Control, 72, 9, 842-850 (1999) · Zbl 0958.93083
[10] Boyd, S.; Ghaoui, EI L.; Feron, E.; Balakrishnan, V., Linear matrix inequalities in system and control theory (1994), SIAM: SIAM PA · Zbl 0816.93004
[11] Burden, R. L.; Faires, J. D., Numerical analysis (2000), Brooks/Cole: Brooks/Cole New York
[12] Christofides, P. D., Nonlinear and robust control of PDE systems: methods and applications to transport-reaction processes (2001), Birkhäuser: Birkhäuser Boston, MA · Zbl 1018.93001
[13] Costa, O. L.V.; Val, do J. B.R.; Geromel, J. C., Continuous-time state feedback \(H_2\) control of Markovian jump linear systems via convex analysis, Automatica, 35, 2, 259-264 (1999) · Zbl 0939.93041
[14] Curtain, R. F., Finite-dimensional compensator design for parabolic distributed systems with point sensors and boundary input, IEEE Transactions on Automatic Control, 27, 1, 98-104 (1982) · Zbl 0477.93039
[15] Curtain, R. F.; Zwart, H. J., An introduction to infinite-dimensional linear systems theory (1995), Springer-Verlag: Springer-Verlag New York · Zbl 0646.93014
[16] Dubljevic, S.; Christofides, P. D.; Kevrekidis, I. G., Distributed nonlinear control of diffusion-reaction processes, International Journal of Robust and Nonlinear Control, 14, 2, 133-156 (2004) · Zbl 1073.93031
[17] Fang, Y. G.; Loparo, K. A., Stabilization of continuous-time jump linear systems, IEEE Transactions on Automatic Control, 47, 10, 1590-1603 (2002) · Zbl 1364.93632
[18] Feng, X.; Loparo, K. A.; Ji, Y.; Chezick, H. J., Stochastic stability properties of jump linear systems, IEEE Transactions on Automatic Control, 37, 1, 38-53 (1992) · Zbl 0747.93079
[19] Gahinet, P.; Nemirovskii, A.; Laub, A. J.; Chilali, M., LMI control toolbox for use with MATLAB (1995), The Math. Works Inc.: The Math. Works Inc. Natick, MA
[20] Ghaoui, El. L.; Aitrami, M., Robust state-feedback stabilization of jump linear systems via LMIs, International Journal of Robust and Nonlinear Control, 6, 9-10, 1015-1022 (1996) · Zbl 0863.93067
[21] Ho, C.; Tai, Y., REVIEW: MEMS and its applications for flow control, Journal of Fluids Engineering-Transactions of the ASME, 118, 3, 437-447 (1996)
[22] Ji, Y.; Chezick, H. J., Controllability, stabilization, and continuous-time Markovian jump linear quadratic control, IEEE Transactions on Automatic Control, 35, 7, 777-788 (1990) · Zbl 0714.93060
[23] Krasovskii, N. N.; Lidskii, E. A., Analytical design of controllers in systems with random attributes, Automation and Remote Control, 22, 9-11, 1021-1025 (1961), 1141-1146, 1289-1294 · Zbl 0104.36704
[24] Levine, I. N., Quantum chemistry (2009), Pearson Prentice Hall: Pearson Prentice Hall New Jersey
[25] Li, L.; Ugrinovskii, V. A., On necessary and sufficient conditions for \(H_\infty\) output feedback control of Markov jump linear systems, IEEE Transactions on Automatic Control, 52, 7, 1287-1292 (2007) · Zbl 1366.93158
[26] Mariton, M., Jump linear systems in automatic control (1990), Marcel Dekker: Marcel Dekker New York
[27] Peterson, I. R., A stabilization algorithm for a class of uncertain linear systems, System & Control Letters, 8, 4, 351-357 (1987) · Zbl 0618.93056
[28] Ray, W. H., Advanced process control (1981), McGraw-Hill: McGraw-Hill New York
[29] Shaked, U.; Suplin, V., A new bounded real lemma representation for the continuous-time case, IEEE Transactions on Automatic Control, 46, 9, 1420-1426 (2001) · Zbl 1006.93016
[30] Shi, P.; Boukas, E. K., \(H_\infty \)-control for Markovian jumping linear systems with parametric uncertainty, Journal of Optimization Theory and Applications, 95, 1, 75-99 (1997) · Zbl 1026.93504
[31] Shi, P.; Xia, Y. Q.; Liu, G. P.; Rees, D., On designing of sliding-mode control for stochastic jump systems, IEEE Transactions on Automatic Control, 51, 5, 836-841 (2006)
[32] Smoller, J., Shock waves and reaction-diffusion equations (1983), Springer-Verlag: Springer-Verlag New York · Zbl 0508.35002
[33] Souza, de C. E., Robust stability and stabilization of uncertain discrete-time Markovian jump linear systems, IEEE Transactions on Automatic Control, 51, 1, 97-103 (2006)
[34] Souza, de C. E.; Fragoso, M. D., \(H_\infty\) control for linear systems with Markovian jumping parameters, Control Theory and Advanced Technology, 9, 2, 457-466 (1993)
[35] Tanelli, M.; Bolzern, P.; Colaneri, P., Almost sure stabilization of uncertain continuous-time Markov jump linear systems, IEEE Transactions on Automatic Control, 55, 1, 195-201 (2010) · Zbl 1368.93775
[36] Wolff, J.; Papathanasiou, A. G.; Rotermund, H. H.; Ertl, G.; Li, X.; Kevrekidis, I. G., Local manipulation of catalytic surface reactivity, Journal of Catalysis, 216, 1-2, 246-256 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.