×

The areas log-Minkowski inequality. (English) Zbl 1467.52015

Summary: In this paper, we first propose and establish an Orlicz log-Minkowski inequality for affine surface areas by introducing new concepts of affine surface area measures and using the newly established Orlicz Minkowski inequality for mixed affine surface areas. The new Orlicz log-Minkowski inequality in special cases yields the classical Minkowski inequality for mixed affine surface areas, areas log-Minkowki inequality \(L_p\) log-Minkowski inequality for affine surface areas and other log-Minkowski type inequalities for affine surface areas.

MSC:

52A40 Inequalities and extremum problems involving convexity in convex geometry
52A39 Mixed volumes and related topics in convex geometry
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
Full Text: DOI

References:

[1] Bonnesen, T.; Fenchel, W., Theorie der konvexen \(K \ddot{o}\) rper (1934), Berlin: Springer, Berlin · JFM 60.0673.01 · doi:10.1007/978-3-642-47404-0
[2] Böröczky, KJ; Lutwak, E.; Yang, D.; Zhang, G., The log-Brunn-Minkowski inequality, Adv. Math., 231, 1974-1997 (2012) · Zbl 1258.52005 · doi:10.1016/j.aim.2012.07.015
[3] Burago, YD; Zalgaller, VA, Geometric Inequalities (1988), Berlin: Springer, Berlin · Zbl 0633.53002 · doi:10.1007/978-3-662-07441-1
[4] Chou, K., Wang, X.: A logarithmic Gauss curvature flow and the Minkowski problem. Ann. Inst. Henri Poincaré, Analyse non linéaire, 17(6), 733-751 (2000) · Zbl 1071.53534
[5] Colesanti, A.; Cuoghi, P., The Brunn-Minkowski inequality for the \(n\)-dimensional logarithmic capacity of convex bodies, Potent. Math., 22, 289-304 (2005) · Zbl 1074.31007 · doi:10.1007/s11118-004-1326-7
[6] Fathi, M.; Nelson, B., Free Stein kernels and an improvement of the free logarithmic Sobolev inequality, Adv. Math., 317, 193-223 (2017) · Zbl 1381.46058 · doi:10.1016/j.aim.2017.06.035
[7] He, B.; Leng, G.; Li, K., Projection problems for symmetric polytopes, Adv. Math., 207, 73-90 (2006) · Zbl 1111.52012 · doi:10.1016/j.aim.2005.11.006
[8] Henk, M.; Pollehn, H., On the log-Minkowski inequality for simplices and parallelepipeds, Acta Math. Hung., 155, 141-157 (2018) · Zbl 1413.52012 · doi:10.1007/s10474-018-0822-y
[9] Hou, S.; Xiao, J., A mixed volumetry for the anisotropic logarithmic potential, J. Geom Anal., 28, 2018-2049 (2018) · Zbl 1412.31006 · doi:10.1007/s12220-017-9895-z
[10] Li, C.; Wang, W., Log-Minkowski inequalities for the \(L_p\)-mixed quermassintegrals, J. Inequal. Appl., 2019, 85 (2019) · Zbl 1534.52006 · doi:10.1186/s13660-019-2042-6
[11] Lutwak, E., The Brunn-Minkowski-Firey Theory I: mixed volumes and the Minkowski problem, J. Differ. Geom., 38, 131-150 (1993) · Zbl 0788.52007 · doi:10.4310/jdg/1214454097
[12] Lutwak, E., The Brunn-Minkowski-Firey theory II: affine and geominimal surface areas, Adv. Math., 118, 244-294 (1996) · Zbl 0853.52005 · doi:10.1006/aima.1996.0022
[13] Lutwak, E.; Yang, D.; Zhang, G., \(L_p\) affine isoperimetric inequalities, J. Differ. Geom., 56, 111-132 (2000) · Zbl 1034.52009 · doi:10.4310/jdg/1090347527
[14] Lutwak, E.; Yang, D.; Zhang, G., Sharp affine \(L_p\) Sobolev inequalities, J. Differ. Geom., 62, 17-38 (2002) · Zbl 1073.46027 · doi:10.4310/jdg/1090425527
[15] Lv, S., The \(\varphi \)-Brunn-Minkowski inequality, Acta Math. Hung., 156, 226-239 (2018) · Zbl 1424.52014 · doi:10.1007/s10474-018-0825-8
[16] Ma, L., A new proof of the Log-Brunn-Minkowski inequality, Geom. Dedicata., 177, 75-82 (2015) · Zbl 1396.52014 · doi:10.1007/s10711-014-9979-x
[17] Saroglou, C., Remarks on the conjectured log-Brunn-Minkowski inequality, Geom. Dedicata., 177, 353-365 (2015) · Zbl 1326.52010 · doi:10.1007/s10711-014-9993-z
[18] Schneider, R., Convex Bodies: The Brunn-Minkowski Theory (1993), Cambridge: Cambridge University Press, Cambridge · Zbl 0798.52001 · doi:10.1017/CBO9780511526282
[19] Stancu, A., The logarithmic Minkowski inequality for non-symmetric convex bodies, Adv. Appl. Math., 73, 43-58 (2016) · Zbl 1331.52014 · doi:10.1016/j.aam.2015.09.015
[20] Wang, W.; Feng, M., The log-Minkowski inequalities for quermassintegrals, J. Math. Inequal., 11, 983-995 (2017) · Zbl 1406.52022 · doi:10.7153/jmi-2017-11-74
[21] Wang, W.; Leng, G., \(L_p\)-mixed affine surface area, J. Math. Anal. Appl., 335, 341-354 (2007) · Zbl 1123.52003 · doi:10.1016/j.jmaa.2007.01.046
[22] Wang, W.; Liu, L., The dual log-Brunn-Minkowski inequality, Taiwan. J. Math., 20, 909-919 (2016) · Zbl 1357.52011
[23] Zhao, C-J, On the Orlicz-Brunn-Minkowski theory, Balkan J. Geom. Appl., 22, 98-121 (2017) · Zbl 1383.52005
[24] Zhao, C-J, Inequalities for Orlicz mixed quermassintegrals, J. Convex Anal., 26, 1, 129-151 (2019) · Zbl 1411.52003
[25] Zhao, C-J, Orlicz affine surface area, Balkan J. Geom. Appl., 24, 100-118 (2019) · Zbl 1462.52014
[26] Zhou, Y.; He, B., On LYZ’s conjecture for the \(U\)-functional, Adv. Appl. Math., 87, 43-57 (2017) · Zbl 1371.52004 · doi:10.1016/j.aam.2016.12.004
[27] Zhu, G., The logarithmic Minkowski problem for polytopes, Adv. Math., 262, 909-931 (2014) · Zbl 1321.52015 · doi:10.1016/j.aim.2014.06.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.