×

Orlicz dual of log-Aleksandrov-Fenchel inequality. (English) Zbl 1524.46047

Summary: In this paper, we establish an Orlicz dual of the log-Aleksandrov-Fenchel inequality, by introducing two new concepts of dual mixed volume measures, and using the newly established Orlicz dual Aleksandrov-Fenchel inequality. The Orlicz dual log-Aleksandrov-Fenchel inequality in special cases yields the classical dual Aleksandrov-Fenchel inequality and some dual logarithmic Minkowski-type inequalities, respectively. Moreover, the dual log-Aleksandrov-Fenchel inequality is therefore also derived.

MSC:

46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
52A39 Mixed volumes and related topics in convex geometry
Full Text: DOI

References:

[1] K. Chou and X. Wang, A logarithmic Gauss curvature flow and the Minkowski problem, Ann. Inst. Henri Poincaré, Analyse non linéaire, 17 (6), 733-751, 2000. · Zbl 1071.53534
[2] A. Colesanti and P. Cuoghi, The Brunn-Minkowski inequality for the n-dimensional logarithmic capacity of convex bodies, Potential Math. 22, 289-304, 2005. · Zbl 1074.31007
[3] M. Fathi and B. Nelson, Free Stein kernels and an improvement of the free logarithmic Sobolev inequality , Adv. Math. 317, 193-223, 2017. · Zbl 1381.46058
[4] W. J. Firey, Polar means of convex bodies and a dual to the Brunn-Minkowski theorem, Canad. J. Math. 13, 444-453, 1961. · Zbl 0126.18005
[5] M. Henk and H. Pollehn, On the log-Minkowski inequality for simplices and parallelepipeds, Acta Math. Hungarica, 155, 141-157, 2018. · Zbl 1413.52012
[6] S. Hou and J. Xiao, A mixed volumetry for the anisotropic logarithmic potential, J. Geom Anal. 28, 2018-2049, 2018. · Zbl 1412.31006
[7] C. Li and W. Wang, Log-Minkowski inequalities for the \(L_p\)-mixed quermassintegrals, J. Inequal. Appl., 2019 (1), 2019. · Zbl 1534.52006
[8] E. Lutwak, Dual mixed volumes, Pacific J. Math. 58, 531-538, 1975. · Zbl 0273.52007
[9] E. Lutwak, Intersection bodies and dual mixed volumes, Adv. Math. 71 232-261, 1988. · Zbl 0657.52002
[10] E. Lutwak, Centroid bodies and dual mixed volumes, Proc. London Math. Soc. 60, 365-391, 1990. · Zbl 0703.52005
[11] S. Lv, The \(\varphi \)-Brunn-Minkowski inequality, Acta Math. Hungarica, 156, 226-239, 2018. · Zbl 1424.52014
[12] L. Ma, A new proof of the log-Brunn-Minkowski inequality, Geom. Dedicata, 177, 75-82, 2015. · Zbl 1396.52014
[13] C. Saroglou, Remarks on the conjectured log-Brunn-Minkowski inequality , Geom. Dedicata, 177, 353-365, 2015. · Zbl 1326.52010
[14] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, 1993. · Zbl 0798.52001
[15] A. Stancu, The logarithmic Minkowski inequality for non-symmetric convex bodies, Adv. Appl. Math. 73, 43-58, 2016. · Zbl 1331.52014
[16] W.Wang and M. Feng, The log-Minkowski inequalities for quermassintegrals, J. Math. Inequal. 11, 983995, 2017. · Zbl 1406.52022
[17] W. Wang and G. Leng, \(L_p\)-dual mixed quermassintegrals, Indian J. Pure Appl. Math. 36, 177-188, 2005. · Zbl 1081.52009
[18] W.Wang and L. Liu, The dual log-Brunn-Minkowski inequalities, Taiwanese J. Math. 20, 909-919, 2016. · Zbl 1357.52011
[19] X. Wang, W. Xu and J. Zhou, Some logarithmic Minkowski inequalities for nonsymmetric convex bodies, Sci. China, 60, 1857-1872, 2017. · Zbl 1431.52014
[20] C.-J. Zhao, The dual logarithmic Aleksandrov-Fenchel inequality, Balkan J. Geom. Appl. 25, 157-169, 2020. · Zbl 1462.52013
[21] C.-J. Zhao, The log-Aleksandrov-Fenchel inequality, Mediterr J. Math. 17 (3), 1-14, 2020. · Zbl 1442.52006
[22] C.-J. Zhao, The dual Orlicz-Aleksandrov-Fenchel inequality, Mathematics, 8 2005, 2020.
[23] C.-J. Zhao, Orlicz dual logarithmic Minkowski inequality, Math Inequal. Appl. 24 (4), 1031-1040, 2021. · Zbl 1484.52007
[24] G. Zhu, The logarithmic Minkowski problem for polytopes, Adv. Math. 262, 909-931, 2014. · Zbl 1321.52015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.