×

Drive-response asymptotic shape synchronization for a class of two-dimensional chaotic systems and its application in image encryption. (English) Zbl 1541.94012

Summary: This paper proposes the concept of drive-response asymptotic shape synchronization for two-dimensional chaotic systems and its application in image encryption. It overcomes the limitations of traditional shape synchronization, eliminates the restrictions on the drive system’s continuous differentiability, and the response system’s specific format, while simplifying the controller design, thereby demonstrating enhanced applicability and ease of implementation. Moreover, based on the characteristics of asymptotic shape synchronization, we propose a novel image encryption scheme. In this scheme, the drive and response systems, initialized with distinct values, achieve identical chaotic attractors through rotation and translation parameters in rigid transformation, which are utilized for encryption and decryption processes, respectively. Our encryption algorithm employs DNA coding to construct a DNA plane and incorporates the concept of Rubik’s cube rotations for scrambling and diffusion. Experimental simulations and performance analysis verify the effectiveness of the proposed encryption scheme in withstanding various attacks, ensuring a high level of security.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
94A60 Cryptography
37D99 Dynamical systems with hyperbolic behavior
Full Text: DOI

References:

[1] Shen, H.; Yu, F.; Wang, C.; Sun, J.; Cai, S., Firing mechanism based on single memristive neuron and double memristive coupled neurons, Nonlinear Dynam., 1-16, 2022
[2] Wang, X.; Liu, C.; Jiang, D., Visually meaningful image encryption scheme based on new-designed chaotic map and random scrambling diffusion strategy, Chaos Solitons Fractals, 164, Article 112625 pp., 2022
[3] Kong, X.; Yu, F.; Yao, W.; Cai, S.; Zhang, J.; Lin, H., Memristor-induced hyperchaos, multiscroll and extreme multistability in fractional-order HNN: Image encryption and FPGA implementation, Neural Netw., 2023
[4] Yu, F.; Xu, S.; Xiao, X.; Yao, W.; Huang, Y.; Cai, S.; Yin, B.; Li, Y., Dynamics analysis, FPGA realization and image encryption application of a 5D memristive exponential hyperchaotic system, Integration, 90, 58-70, 2023
[5] Gong, L.-H.; Luo, H.-X.; Wu, R.-Q.; Zhou, N.-R., New 4D chaotic system with hidden attractors and self-excited attractors and its application in image encryption based on RNG, Physica A, 591, Article 126793 pp., 2022 · Zbl 07485946
[6] Zhou, N.-R.; Tong, L.-J.; Zou, W.-P., Multi-image encryption scheme with quaternion discrete fractional Tchebyshev moment transform and cross-coupling operation, Signal Process., 211, Article 109107 pp., 2023
[7] Gong, L.-H.; Luo, H.-X., Dual color images watermarking scheme with geometric correction based on quaternion FrOOFMMs and LS-SVR, Opt. Laser Technol., 167, Article 109665 pp., 2023
[8] Li, X.; Mou, J.; Banerjee, S.; Wang, Z.; Cao, Y., Design and DSP implementation of a fractional-order detuned laser hyperchaotic circuit with applications in image encryption, Chaos Solitons Fractals, 159, Article 112133 pp., 2022 · Zbl 1505.94007
[9] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Phys. Rev. Lett., 64, 8, 821, 1990 · Zbl 0938.37019
[10] Mahmoud, G. M.; Mahmoud, E. E., Complete synchronization of chaotic complex nonlinear systems with uncertain parameters, Nonlinear Dynam., 62, 875-882, 2010 · Zbl 1215.93114
[11] Lopes, L. M.; Fernandes, S.; Grácio, C., Complete synchronization and delayed synchronization in couplings, Nonlinear Dynam., 79, 1615-1624, 2015 · Zbl 1345.34098
[12] Khennaoui, A.-A.; Ouannas, A.; Bendoukha, S.; Grassi, G.; Lozi, R. P.; Pham, V.-T., On fractional-order discrete-time systems: Chaos, stabilization and synchronization, Chaos Solitons Fractals, 119, 150-162, 2019 · Zbl 1451.37052
[13] Hashemi, S.; Pourmina, M. A.; Mobayen, S.; Alagheband, M. R., Multiuser wireless speech encryption using synchronized chaotic systems, Int. J. Speech Technol., 24, 651-663, 2021
[14] Yu, F.; Kong, X.; Yao, W.; Zhang, J.; Cai, S.; Lin, H.; Jin, J., Dynamics analysis, synchronization and FPGA implementation of multiscroll Hopfield neural networks with non-polynomial memristor, Chaos Solitons Fractals, 179, Article 114440 pp., 2024
[15] Kocarev, L.; Parlitz, U., General approach for chaotic synchronization with applications to communication, Phys. Rev. Lett., 74, 25, 5028, 1995
[16] Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J., Phase synchronization of chaotic oscillators, Phys. Rev. Lett., 76, 11, 1804, 1996
[17] Mahmoud, G. M.; Mahmoud, E. E., Phase and antiphase synchronization of two identical hyperchaotic complex nonlinear systems, Nonlinear Dynam., 61, 141-152, 2010 · Zbl 1204.93096
[18] Yan, J.; Li, C., Generalized projective synchronization of a unified chaotic system, Chaos Solitons Fractals, 26, 4, 1119-1124, 2005 · Zbl 1073.65147
[19] Shahverdiev, E.; Sivaprakasam, S.; Shore, K., Lag synchronization in time-delayed systems, Phys. Lett. A, 292, 6, 320-324, 2002 · Zbl 0979.37022
[20] Cai, G.; Hu, P.; Li, Y., Modified function lag projective synchronization of a financial hyperchaotic system, Nonlinear Dynam., 69, 1457-1464, 2012 · Zbl 1257.37053
[21] Li, X.-F.; Leung, A. C.-S.; Han, X.-P.; Liu, X.-J.; Chu, Y.-D., Complete (anti-) synchronization of chaotic systems with fully uncertain parameters by adaptive control, Nonlinear Dynam., 63, 263-275, 2011 · Zbl 1215.93074
[22] Chen, D.; Zhao, W.; Sprott, J. C.; Ma, X., Application of Takagi-Sugeno fuzzy model to a class of chaotic synchronization and anti-synchronization, Nonlinear Dynam., 73, 1495-1505, 2013 · Zbl 1281.34085
[23] Huang, Y.-y.; Wang, Y.-h., A new chaotic secure communication scheme based on shape synchronization, (The 26th Chinese Control and Decision Conference. The 26th Chinese Control and Decision Conference, 2014 CCDC, 2014, IEEE), 3497-3502
[24] Huang, Y.-y.; Wang, Y.-h.; Zhang, Y., Shape synchronization of drive-response for a class of two-dimensional chaotic systems via continuous controllers, Nonlinear Dynam., 78, 2331-2340, 2014
[25] Huang, Y.; Wang, Y.; Chen, H.; Zhang, S., Shape synchronization control for three-dimensional chaotic systems, Chaos Solitons Fractals, 87, 136-145, 2016 · Zbl 1354.93054
[26] Fridrich, J., Image encryption based on chaotic maps, (1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Vol. 2, 1997, IEEE), 1105-1110
[27] Fridrich, J., Symmetric ciphers based on two-dimensional chaotic maps, Int. J. Bifur. Chaos, 8, 06, 1259-1284, 1998 · Zbl 0935.94019
[28] Liu, H.; Wang, X., Image encryption using DNA complementary rule and chaotic maps, Appl. Soft Comput., 12, 5, 1457-1466, 2012
[29] Karmakar, J.; Pathak, A.; Nandi, D.; Mandal, M. K., Sparse representation based compressive video encryption using hyper-chaos and DNA coding, Digit. Signal Process., 117, Article 103143 pp., 2021
[30] Wang, X.-Y.; Li, P.; Zhang, Y.-Q.; Liu, L.-Y.; Zhang, H.; Wang, X., A novel color image encryption scheme using DNA permutation based on the lorenz system, Multimedia Tools Appl., 77, 6243-6265, 2018
[31] Ye, G.; Wu, H.; Liu, M.; Huang, X., Reversible image-hiding algorithm based on singular value sampling and compressive sensing, Chaos Solitons Fractals, 171, Article 113469 pp., 2023
[32] Wu, H.; Ye, G.; Yap, W.-S.; Goi, B.-M., Reversible blind image hiding algorithm based on compressive sensing and fusion mechanism, Opt. Laser Technol., 167, Article 109755 pp., 2023
[33] Refregier, P.; Javidi, B., Optical image encryption based on input plane and Fourier plane random encoding, Opt. Lett., 20, 7, 767-769, 1995
[34] Gong, L.; Liu, X.; Zheng, F.; Zhou, N., Flexible multiple-image encryption algorithm based on log-polar transform and double random phase encoding technique, J. Modern Opt., 60, 13, 1074-1082, 2013
[35] Zhou, N.-R.; Hu, L.-L.; Huang, Z.-W.; Wang, M.-M.; Luo, G.-S., Novel multiple color images encryption and decryption scheme based on a bit-level extension algorithm, Expert Syst. Appl., 238, Article 122052 pp., 2024
[36] Wang, M.; Wang, X.; Wang, C.; Xia, Z.; Zhao, H.; Gao, S.; Zhou, S.; Yao, N., Spatiotemporal chaos in cross coupled map lattice with dynamic coupling coefficient and its application in bit-level color image encryption, Chaos Solitons Fractals, 139, Article 110028 pp., 2020 · Zbl 1490.94066
[37] Demirtaş, M., A novel multiple grayscale image encryption method based on 3D bit-scrambling and diffusion, Optik, 266, Article 169624 pp., 2022
[38] Yu, F.; Shen, H.; Yu, Q.; Kong, X.; Sharma, P. K.; Cai, S., Privacy protection of medical data based on multi-scroll memristive hopfield neural network, IEEE Trans. Netw. Sci. Eng., 2022
[39] Yu, F.; Kong, X.; Mokbel, A. A.M.; Yao, W.; Cai, S., Complex dynamics, hardware implementation and image encryption application of multiscroll memeristive hopfield neural network with a novel local active memeristor, IEEE Trans. Circuits Syst. II, 70, 1, 326-330, 2022
[40] Yu, F.; Yu, Q.; Chen, H.; Kong, X.; Mokbel, A. A.M.; Cai, S.; Du, S., Dynamic analysis and audio encryption application in IoT of a multi-scroll fractional-order memristive Hopfield neural network, Fractal Fract., 6, 7, 370, 2022
[41] Hu, T.; Liu, Y.; Gong, L.-H.; Ouyang, C.-J., An image encryption scheme combining chaos with cycle operation for DNA sequences, Nonlinear Dynam., 87, 51-66, 2017
[42] Zou, C.; Wang, X.; Zhou, C.; Xu, S.; Huang, C., A novel image encryption algorithm based on DNA strand exchange and diffusion, Appl. Math. Comput., 430, Article 127291 pp., 2022 · Zbl 1510.94085
[43] Firdous, A.; Rehman, A. U.; Missen, M. M.S., A gray image encryption technique using the concept of water waves, chaos and hash function, IEEE Access, 9, 11675-11693, 2021
[44] do CARMO, M., Differential Geometry of Curves and Surfaces, 1976, Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0326.53001
[45] Chern, S.; Chen, W.; Lam, K., Lectures on differential geometry, 1999 · Zbl 0940.53001
[46] Kalman, R. E.; Bertram, J. E., Control system analysis and design via the “second method” of Lyapunov: I—Continuous-time systems, 1960
[47] Kalman, R.; Bertram, J., Control system analysis and design via the second method of Lyapunov:(I) continuous-time systems (II) discrete time systems, IRE Trans. Autom. Control, 4, 3, 1959, 112-112
[48] Zaher, A. A., Duffing oscillators for secure communication, Comput. Electr. Eng., 71, 77-92, 2018
[49] Hénon, M., A two-dimensional mapping with a strange attractor, (The Theory of Chaotic Attractors, 2004, Springer), 94-102
[50] Alvarez, G.; Li, S., Some basic cryptographic requirements for chaos-based cryptosystems, Int. J. Bifurcation Chaos, 16, 08, 2129-2151, 2006 · Zbl 1192.94088
[51] Nkandeu, Y. P.K.; Mboupda Pone, J. R.; Tiedeu, A., Image encryption algorithm based on synchronized parallel diffusion and new combinations of 1D discrete maps, Sens. Imaging, 21, 1-36, 2020
[52] Wang, X.; Feng, L.; Li, R.; Zhang, F., A fast image encryption algorithm based on non-adjacent dynamically coupled map lattice model, Nonlinear Dynam., 95, 2797-2824, 2019 · Zbl 1439.94067
[53] Zhu, S.; Zhu, C., Secure image encryption algorithm based on hyperchaos and dynamic DNA coding, Entropy, 22, 7, 772, 2020
[54] Liu, L.; Lei, Y.; Wang, D., A fast chaotic image encryption scheme with simultaneous permutation-diffusion operation, IEEE Access, 8, 27361-27374, 2020
[55] Ur Rehman, A.; Xiao, D.; Kulsoom, A.; Hashmi, M. A.; Abbas, S. A., Block mode image encryption technique using two-fold operations based on chaos, MD5 and DNA rules, Multimedia Tools Appl., 78, 9355-9382, 2019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.