×

Integrability, conservation laws and exact solutions for a model equation under non-canonical perturbation expansions. (English) Zbl 1504.35386

Summary: In this paper, the non-linear for the small long amplitude waves in two dimensional (2D) shallow water waves propagation with free surface are considered. The shallow water wave problem leads to the non-linear Hamiltonian model equation. Based on the binary Bell-polynomials approach, the bilinear form, bilinear Bäcklund transformation and multiple wave solutions are obtained. The conservation laws are constructed using two different techniques, namely, the Ibragimov’s theorem and the multiplier method. The Noether’s approach was applied to the non-linear Hamiltonian model equation to obtain the conservation laws. Also, we show that the non-linear Hamiltonian model equation is nonlinearly self-adjoint. Conserved quantities of Hamiltonian model equation are illustrated. Finally, with the help of the extended homogeneous balance method, and an exponential method, a set of new exact solutions for the non-linear Hamiltonian model equation are obtained.

MSC:

35Q35 PDEs in connection with fluid mechanics
35Q31 Euler equations
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
35B35 Stability in context of PDEs
37K35 Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems
35A30 Geometric theory, characteristics, transformations in context of PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
58J72 Correspondences and other transformation methods (e.g., Lie-Bäcklund) for PDEs on manifolds
Full Text: DOI

References:

[1] Abdou, M. A.; Soliman, A. A., Variational iteration method for solving Burgers and coupled Burgers equations, J. Comput. Appl. Math., 181, 245-251 (2005) · Zbl 1072.65127
[2] Anco, S. C.; Bluman, G. W., Direct construction method for conservation laws of partial differential equations. Part I: examples of conservation law classifications, J. Appl. Math., 13, 66-545 (2002) · Zbl 1034.35070
[3] Avdonina, E. D.; Ibragimov, N. H., Conservation laws and exact solutions for nonlinear diffusion in anisotropic media, Commun. Nonlinear Sci. Numer. Simul., 18, 2595-2603 (2013) · Zbl 1306.35003
[4] Benjamin, T. B., The solitary wave with surface tension, Q. Appl. Math., 40, 231-234 (1982) · Zbl 0489.76029
[5] Benjamin, T. B.; Olver, P. J., Hamiltonian structure, symmetries and conservation laws for water waves, J. Fluid Mech., 125, 137-185 (1982) · Zbl 0511.76020
[6] Chun, C.; Sakthivel, R., Homotopy perturbation technique for solving two points boundary value problems-comparison with other methods, Comput. Phys. Commun., 181, 1021-1024 (2010) · Zbl 1216.65094
[7] Dodd, R. K.; Eilbeck, J. C.; Gibbon, J. D., Solitons and Nonlinear Wave Equations (1982), Academic Press: Academic Press New York · Zbl 0496.35001
[8] EL-Kalaawy, O. H., Variational principle, conservation laws and exact solutions for dust ion acoustic shock waves modeling modified Burger equation, Comput. Math. Appl., 72, 1031-1041 (2016) · Zbl 1359.76176
[9] EL-Kalaawy, O. H., New: variational principle-exact solutions and conservation laws for modified ion-acoustic shock waves and double layers with electron degenerate in plasma, Phys. Plasmas, 70, Article 1 pp. (2017)
[10] EL-Kalaawy, O. H.; Ibrahim, R. S., Truncated Painlevé expansion, Tanh-traveling wave solutions and reduction of sine-Poisson equation to a quadrature for stationary and nonstationary three-dimensional collisionless cold plasma, Phys. Plasmas, 13, Article 102 pp. (2006)
[11] EL-Kalaawy, O. H.; Moawad, S. M.; Wael, S., Conservation laws, Painlevé analysis and exact solutions for S-KP equation in coupled dusty plasma, Results Phys., 7, 934-946 (2017)
[12] Feng, J.; Li, W.; Wan, Q., Using \(( G^\prime / G)\)-expansion method to seek traveling wave solution of Kolmogorov-Petrovskii-Piskunov equation, Appl. Math. Comput., 217, 5860-5865 (2011) · Zbl 1209.35115
[13] Feng, Z. S.; Wang, X. H., The first integral method to the two-dimensional Burgers-Korteweg-de Vries equation, Phys. Lett. A, 308, 173-178 (2003) · Zbl 1008.35062
[14] Gardner, C. S.; Green, J. M.; Kruskal, M. D.; Miura, R. M., Method for solving the Korteweg-deVries equation, Phys. Rev. Lett., 19, 1095-1097 (1967) · Zbl 1103.35360
[15] Guo, S.; Zhou, Y., The extended \(( G^\prime / G)\)-expansion method and its applications to the Whitham-Broer-Kaup-like equations and coupled Hirota-Satsuma KdV equations, Appl. Math. Comput., 215, 3214-3221 (2010) · Zbl 1187.35209
[16] He, J. H.; Wu, X. H., Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, 30, 700-708 (2006) · Zbl 1141.35448
[17] Hirota, R., Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27, 1192-1194 (1971) · Zbl 1168.35423
[18] Ibragimov, N. H., A new conservation theorem, J. Math. Anal. Appl., 333, 311-328 (2007) · Zbl 1160.35008
[19] Ibragimov, N. H., Quasi-self-adjoint differential equations, Arch. ALGA, 4, 55-60 (2007)
[20] Ibragimov, N. H.; Meleshko, S. V., Invariants and invariant description of second order ODEs with three infinitesimal symmetries, Commun. Nonlinear Sci. Numer. Simul., 12, 1370-1378 (2007) · Zbl 1129.34029
[21] Jawad, A.; Petkovic, M. D.; Biswas, A., Modified simple equation method for nonlinear evolution equations, Appl. Math. Comput., 217, 869-877 (2010) · Zbl 1201.65119
[22] Kudryashov, N. A., Exact soliton solutions of the generalized evolution equation of wave dynamics, J. Appl. Math. Mech., 52, 361-365 (1988)
[23] Lambert, F.; Leble, S.; Springael, J., Binary Bell polynomials and Darboux covariant Lax pairs, Glasg. Math. J., 43, 53-63 (2001) · Zbl 1045.37040
[24] Lax, P. D., Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math., 21, 467-490 (1968) · Zbl 0162.41103
[25] Liu, S.; Fu, Z.; Liu, S. D.; Zhao, Q., Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A, 289, 69-74 (2001) · Zbl 0972.35062
[26] Ma, Wen-Xiu; Zhu, Zuonong, Solving the (3 + 1)-dimensional generalized KP and BKP equation by the multiple exp-function algorithm, Appl. Math. Comput., 218, 11871-11879 (2012) · Zbl 1280.35122
[27] Ma, Wen-Xiu; Huang, Tingwen; Zhang, Yi, A multiple exp-function method for nonlinear differential equations and its application, Phys. Scr., 82, Article 065003 pp. (2010) · Zbl 1219.35209
[28] Malfliet, W.; Hereman, W., Exact solutions of nonlinear evolution and wave equations, Phys. Scr., 54, 563-568 (1996) · Zbl 0942.35034
[29] Muatjetjeja, B.; Khalique, C. M., Symmetry analysis and conservation laws for a coupled (2 + 1)-dimensional hyperbolic system, Commun. Nonlinear Sci. Numer. Simul., 22, 1252-1262 (2015) · Zbl 1329.37059
[30] Noether, E., Invariante variationsprobleme, Nachr. König. Ges. Wiss. Gött., Math.-Phys. Kl. Heft, 2, 235-257 (1918) · JFM 46.0770.01
[31] Olver, P. J., Hamiltonian and Non-Hamiltonian Models for Water Waves, 273-290 (1984), Springer: Springer Berlin, Heidelberg · Zbl 0583.76014
[32] Qin, Yi.; Yi-Tian, G.; Xin, Yu.; Gao-Qing, M., Bell polynomial approach and N-soliton solutions for a coupled KdV-mKdV system, Commun. Theor. Phys., 58, 73-78 (2012) · Zbl 1263.37078
[33] Rahman, N.; Alam, Md., Application of Exp \((- \operatorname{\Phi}(\xi))\)-expansion method to find the exact solutions of Shorma-Tasso-Olver equation, Afr. J. Math. Comput. Sci. Res., 7, 1-6 (2014)
[34] Seadawy, A. R., Stability analysis for two-dimensional ion-acoustic waves in quantum plasmas, Phys. Plasmas, 21, Article 052107 pp. (2014)
[35] Seadawy, A. R., Three-dimensional nonlinear modified Zakharov-Kuznetsov equation of ion-acoustic waves in a magnetized plasma, Comput. Math. Appl., 71, 201-212 (2016) · Zbl 1443.82015
[36] Seadawy, A. R., Ion acoustic solitary wave solutions of two-dimensional nonlinear Kadomtsev-Petviashvili-Burgers equation in quantum plasma, Math. Methods Appl. Sci., 40, 5, 1598-1607 (2017) · Zbl 1366.35141
[37] Seadawy, A. R., Solitary wave solutions of tow-dimensional nonlinear Kadomtsev-Petviashvili dynamic equation in a dust acoustic plasmas, Pramana J. Phys., 89, 3, 1-11 (2017)
[38] Wael, Shrouk; Seadawy b, Aly R.; EL-Kalaawy, O. H.; Maowad, S. M.; Baleanu, Dumitru, Symmetry reduction, conservation laws and acoustic wave solutions for the extended Zakharov-Kuznetsov dynamical model arising in a dust plasma, Results Phys., 19, Article 103652 pp. (2020)
[39] Wael, Shrouk; Seadawy, Aly R.; Moawad, Salah M.; El-Kalaawy, Omar H., Bilinear Bäcklund transformation, N-soliton, and infinite conservation laws for Lax-Kadomtsev-Petviashvili and generalized Korteweg-de Vries equations, Math. Methods Appl. Sci. (2021) · Zbl 1473.35098
[40] Wang, M. L., Exact solutions for a compound KdV-Burgers equation, Phys. Lett. A, 213, 279-287 (1996) · Zbl 0972.35526
[41] Wang, M. L.; Li, X.; Zhang, J., The \(( G^\prime / G)\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A, 372, 417-423 (2008) · Zbl 1217.76023
[42] Wazwaz, Am., The extended tanh method for new compact and non-compact solutions for the KP-BBM and the ZK-BBM equations, Chaos Solitons Fractals, 38, 1505-1516 (2008) · Zbl 1154.35443
[43] Weiss, J., The Painlevé property for partial differential equations, J. Math. Phys., 628, 1405-1413 (1983) · Zbl 0531.35069
[44] Whitham, G. B., Linear and Nonlinear Waves (1974), Wiley-Interscience: Wiley-Interscience New York · Zbl 0373.76001
[45] Yan, Z. Y.; Zhang, H. Q., New explicit solitary wave solutions and periodic wave solutions for Whitham- Broer-Kaup equation in shallow water, Phys. Lett. A, 285, 355-362 (2001) · Zbl 0969.76518
[46] Zakharov, V. E., Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., 9, 190-194 (1968)
[47] Zhang, H., New application of the \(( G^\prime / G)\)-expansion method, Commun. Nonlinear Sci. Numer. Simul., 14, 3220-3225 (2009) · Zbl 1221.35380
[48] Zhang, S.; Dong, L., The \(( G^\prime / G)\)-expansion method for nonlinear differential-difference equations, Phys. Lett. A, 373, 905-910 (2009) · Zbl 1228.34096
[49] Zhao, M. M.; Li, C., The exp \((- \varphi(\eta))\)-expansion method applied to nonlinear evolution equations, Found. Appl. Phys., 4, 1-18 (2017)
[50] Zhenya, Y., Abundant families of Jacobi elliptic function solutions of the \(( G^\prime / G)\)-dimensional integrable Davey-Stewartson-type equation via a new method, Chaos Solitons Fractals, 18, 299-309 (2003) · Zbl 1069.37060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.