×

Weakly nonlinear waves propagating in hyperelastic cylindrical rod tranquility of compressible Murnaghan material. (English) Zbl 1511.35343

MSC:

35Q74 PDEs in connection with mechanics of deformable solids
35Q53 KdV equations (Korteweg-de Vries equations)
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74B10 Linear elasticity with initial stresses
74B20 Nonlinear elasticity
35C08 Soliton solutions
33E05 Elliptic functions and integrals
Full Text: DOI

References:

[1] A. Bekir, “Multisoliton solutions to Cahn-Allen equation using double exp-function method,” Physics of Wave Phenomena, Vol. 20, No. 2, 118-121 (2012); DOI: doi:10.3103/S1541308X12020045.
[2] M. Jahani and J. Manafian, “Improvement of the exp-function method for solving the BBM equation with time-dependent coefficients,” The European Physical Journal Plus, 131, No. 54, 11 (2016); DOI: doi:10.1140/epjp/i2016-16054-2.
[3] Aghdaei, MF; Manafian, J., Application of the exp-function method for solving a partial differential equation arising in problems of hydrodynamics, International Journal of Applied and Computational Mathematics, 3, 4, 3937-3944 (2017) · Zbl 1397.35061 · doi:10.1007/s40819-017-0335-3
[4] Ayub, K.; Khan, MY; Mahmood-Ul-Hassan, Q., Solitary and periodic wave solutions of Calogero-Bogoyavlenskii-Schiff equation via exp-function methods, Computers and Mathematics with Applications, 74, 12, 3231-3241 (2017) · Zbl 1398.35193 · doi:10.1016/j.camwa.2017.08.021
[5] J-G. Liu, L. Zhou and Y. He, “Multiple soliton solutions for the new (2 + 1)-dimensional Korteweg-de Vries equation by multiple exp-function method,” Applied Mathematics Letters, Vol. 80, 71-78 (2018); DOI: doi:10.1016/j.aml.2018.01.010. · Zbl 1394.35424
[6] Hassan, MM; Abdel-Razek, MA; Shoreh, AAH, New exact solutions of some (2 + 1)-dimensional nonlinear evolution equations via extended Kudryashov method, Reports on Mathematical Physics, 74, 3, 347-358 (2014) · Zbl 1306.37075 · doi:10.1016/S0034-4877(15)60006-4
[7] Yakup, Y.; Çelik, N.; Yaşar, E., Nonlinear Schro¨dinger equations with spatio-temporal dispersion in Kerr, parabolic, power and dual power law media: A novel extended Kudryashov’s algorithm and soliton solutions, Results in Physics, 7, 3116-3123 (2017) · doi:10.1016/j.rinp.2017.08.008
[8] A. Biswas, Y. Yakup, E. Yaşar, Q. Zhou, A. S. Alshomrani, S. P. Moshokoa and M. Belic, “Solitons for perturbed Gerdjikov-Ivanov equation in optical fibers and PCF by extended Kudryashov’s method,” Optical and Quantum Electronics, 50, No. 149, 13 (2018); DOI: doi:10.1007/s11082-018-1417-0.
[9] Yaşar, E.; Yakup, Y.; Adem, AR, Perturbed optical solitons with spatio-temporal dispersion in (2 + 1) dimensions by extended Kudryashov method, Optik, 158, 1-14 (2018) · doi:10.1016/j.ijleo.2017.11.205
[10] A. Kilicman and R. Silambarasan, “Modified Kudryashov method to solve generalized Kuramoto-Sivashinsky equation,” Symmetry, Vol. 10, No. 10, 527, 15 (2018); DOI: doi:10.3390/sym10100527.
[11] A. R. Adem, Y. Yakup and E. Yaşar, “Soliton solutions to the non-local Boussinesq equation by multiple exp-function scheme and extended Kudryashov’s approach,” Pramana, 92, No. 24, 11 (2019); DOI: doi:10.1007/s12043-018-1679-x.
[12] J. Feng, W. Li and Q. Wan, “Using \(\left(\frac{G^{\prime }}{G}\right)\) expansion method to seek the traveling wave solution of Kolmogorov-Petrovskii-Piskunov equation,” Applied Mathematics and Computation, Vol. 217, No. 12, 5860-5865 (2011); DOI: 10.1016/j.amc.2010.12.071. · Zbl 1209.35115
[13] G. Ebadi and A. Biswas, “Application of \(\left(\frac{G^{\prime }}{G}\right)\) expansion method to kuramoto-Sivashinsky equation,” Acta Mathematicae Applicatae Sinica, English Series, Vol. 32, No. 3, 623-630 (2016); DOI: 10.1007/s10255-016-0589-2. · Zbl 1361.35152
[14] M. Ekici, “Soliton and other solutions of nonlinear time fractional parabolic equations using extended \(\left(\frac{G^{\prime }}{G}\right)\) expansion method,” Optik, Vol. 130, 1312-1319 (2017); DOI: 10.1016/j.ijleo.2016.11.104.
[15] F. Batool and G. Akram, “New solitary wave solutions of the time-fractional Cahn-Allen equation via the improved \(\left(\frac{G^{\prime }}{G}\right)\) expansion method,” The European Physical Journal Plus, 133, No. 171, 11 (2018); DOI: 10.1140/epjp/i2018-12025-y.
[16] M. Foroutan, J. Manafian and A. Ranjbaran, “Solitons in optical metamaterials with anti-cubic law of nonlinearity by generalized \(\left(\frac{G^{\prime }}{G}\right)\) expansion method,” Optik, Vol. 162, 86-94 (2018); DOI: 10.1016/j.ijleo.2018.02.087.
[17] Zayed, EME; Ibrahim, SAH, Exact solutions of Kolmogorov-Petrovskii-Piskunov equation using the modified simple equation method, Acta Mathematicae Applicatae Sinica, English Series, 30, 3, 749-754 (2014) · Zbl 1335.35108 · doi:10.1007/s10255-014-0416-6
[18] Yaşar, E.; Yakup, Y.; Zhou, Q.; Moshokoa, SP; Ullah, MZ; Triki, H.; Biswas, A.; Belic, M., Perturbed dark and singular optical solitons in polarization preserving fibers by modified simple equation method, Superlattices and Microstructures, 111, 487-498 (2017) · doi:10.1016/j.spmi.2017.07.004
[19] Arnous, AH; Ullah, MZ; Asma, M.; Moshokoa, SP; Mirzazadeh, M.; Biswas, A.; Belic, M., Nematicons in liquid crystals by modified simple equation method, Nonlinear Dynamics, 88, 4, 2863-2872 (2017) · doi:10.1007/s11071-017-3416-2
[20] C. Chen, “Singular solitons of Biswas-Arshed equation by the modified simple equation method,” Optik, Vol. 184, 412-420 (2019); DOI: doi:10.1016/j.ijleo.2019.04.045.
[21] M. Tahir and A. U. Awan, “Optical singular and dark solitons with Biswas-Arshed model by modified simple equation method,” Optik, Vol. 202, 163523 (2020); DOI: doi:10.1016/j.ijleo.2019.163523.
[22] A. M. Wazwaz, “A sine-cosine method for handling nonlinear wave equations,” Mathematical and Computer Modelling, Vol. 40, 499-508 (2004); DOI: doi:lO.lO16/j.mcm.2003.12.010. · Zbl 1112.35352
[23] Zayed, EME; Abdelaziz, MAM, Exact solutions for the nonlinear Schrödinger equation with variable coefficients using the generalized extended tanh-function, the sine-cosine and the exp-function methods, Applied Mathematics and Computation, 218, 5, 2259-2268 (2011) · Zbl 1229.35278 · doi:10.1016/j.amc.2011.07.043
[24] Bibi, S.; Mohyud-Din, ST, Traveling wave solutions of KdVs using sine-cosine method, Journal of the Association of Arab Universities for Basic and Applied Sciences, 15, 90-93 (2014) · doi:10.1016/j.jaubas.2013.03.006
[25] Mirzazadeh, M.; Eslami, M.; Zerrad, E.; Mahmood, MF; Biswas, A.; Belic, M., Optical solitons in nonlinear directional couplers by sine-cosine function method and Bernoulli’s equation approach, Nonlinear Dynamics, 81, 4, 1933-1949 (2015) · Zbl 1348.78023 · doi:10.1007/s11071-015-2117-y
[26] K. R. Raslan, T. S. EL-Danaf and K. K. Ali, “New exact solution of coupled general equal width wave equation using sinecosine function method,” Journal of the Egyptian Mathematical Society, Vol. 25, No. 3, 350-354 (2017); DOI: doi:10.1016/j.joems.2017.03.004. · Zbl 1377.35052
[27] Dai, C.; Ni, Y., The application of extended tanh-function approach in Toda lattice equations, International Journal of Theoretical Physics, 46, 1455-1456 (2007) · Zbl 1118.37033 · doi:10.1007/s10773-006-9285-y
[28] Soliman, AA, Extended improved tanh-function method for solving the nonlinear physical problems, Acta Applicandae Mathematicae, 104, 3, 367-383 (2008) · Zbl 1165.35046 · doi:10.1007/s10440-008-9262-y
[29] Zahran, EHM; Khater, MM, The modified extended tanh-function method and its applications to the Bogoyavlenskii equation, Applied Mathematical Modelling, 40, 3, 1769-1775 (2016) · Zbl 1446.35178 · doi:10.1016/j.apm.2015.08.018
[30] Y-Y. Wang, Y-P. Zhang and C-Q. Dai, “Re-study on localized structures based on variable separation solutions from the modified tanh-function method,” Nonlinear Dynamics, Vol. 83, No. 3, 1331-1339 (2016); DOI: doi:10.1007/s11071-015-2406-5.
[31] Akbulut, A.; Taşcan, F., Application of conservation theorem and modified extended tanh-function method to (1 + 1)-dimensional nonlinear coupled Klein-Gordon-Zakharov equation, Chaos, Solitons and Fractals, 104, 33-40 (2017) · Zbl 1380.35045 · doi:10.1016/j.chaos.2017.07.025
[32] Huiqun, Z., Extended Jacobi elliptic function expansion method and its applications, Communications in Nonlinear Science and Numerical Simulation, 12, 5, 627-635 (2007) · Zbl 1111.35317 · doi:10.1016/j.cnsns.2005.08.003
[33] Wen, X.; Lü, D., Extended Jacobi elliptic function expansion method and its application to nonlinear evolution equation, Chaos, Solitons and Fractals, 41, 3, 1454-1458 (2009) · Zbl 1198.35243 · doi:10.1016/j.chaos.2008.06.006
[34] Zhang, S.; Xia, T., Variable-coefficient Jacobi elliptic function expansion method for (2 + 1)-dimensional Nizhnik-Novikov-Vesselov equations, Applied Mathematics and Computation, 218, 4, 1308-1316 (2011) · Zbl 1229.35254 · doi:10.1016/j.amc.2011.06.014
[35] Ali, AT, New generalized Jacobi elliptic function rational expansion method, Journal of Computational and Applied Mathematics, 235, 14, 4117-4127 (2011) · Zbl 1219.35219 · doi:10.1016/j.cam.2011.03.002
[36] Zayed, EME; Alurrfi, KAE, A new Jacobi elliptic function expansion method for solving a nonlinear PDE describing the nonlinear low-pass electrical lines, Chaos, Solitons and Fractals, 78, 148-155 (2015) · Zbl 1353.35274 · doi:10.1016/j.chaos.2015.07.018
[37] O. Tasbozan, Y. Çenesiz and A. Kurt, “New solutions for conformable fractional Boussinesq and combined KdV-mKdV equations using Jacobi elliptic function expansion method,” The European Physical Journal Plus, 131, No. 244, 14 (2016); DOI: doi:10.1140/epjp/i2016-16244-x.
[38] N. Z. Petrović and M. Bohra, “General Jacobi elliptic function expansion method applied to the generalized (3 + 1)-dimensional nonlinear Schrödinger equation,” Optical and Quantum Electronics, 48, No. 268, 8 (2016); DOI: doi:10.1007/s11082-016-0522-1.
[39] E. Tala-Tebue and E. M. E. Zayed, “New Jacobi elliptic function solutions, solitons and other solutions for the (2 + 1)-dimensional nonlinear electrical transmission line equation,” The European Physical Journal Plus, 133, No. 314, 7 (2018); DOI: doi:10.1140/epjp/i2018-12118-7.
[40] V. Senthil Kumar, H. Rezazadeh, M. Eslami, F. Izadi and M. S. Osman, “Jacobi elliptic function expansion method for solving KdV equation with conformable derivative and dual-power law nonlinearity,” International Journal of Applied and Computational Mathematics, 5, No. 127, 10 (2019); DOI: doi:10.1007/s40819-019-0710-3. · Zbl 1431.35155
[41] R. Silambarasan, H. M. Baskonus and H. Bulut, “Jacobi elliptic function solutions of the double dispersive equation in the Murnaghan’s rod,” The European Physical Journal Plus, 134, No. 125 (2019); DOI: doi:10.1140/epjp/i2019-12541-2.
[42] W. Gao, R. Silambarasan, H. M. Baskonus, R. Vijay Anand and H. Rezazadeh, “Periodic waves of the non dissipative double dispersive micro strain wave in the micro structured solids,” Physica A. Statistical Mechanics and its Applications, Vol. 545, Article ID: 123772, 30 (2020); DOI: doi:10.1016/j.physa.2019.123772.
[43] H-H. Dai and X. Fan, “Asmptoticaliy approximate model equations for weakly nonlinear long waves in compressible elastic rods and their comparisons with other simplified model equations,” Mathematics and Mechanics of Solids, Vol. 9, No. 1, 61-79 (2004); DOI: doi:10.1177/1081286503035199. · Zbl 1167.74464
[44] R. Wang, X. Yuan, H. Zhang, J. Zhang and N. Lv, “Symmetry transformations and exact solutions of a generalized hyperelastic rod equation,” CMC: Computers, Materials & Continua, Vol. 55, No. 2, 345-357 (2018); DOI: doi:doi:10.3970/cmc.2018.00233.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.