×

On symmetric Tetranacci polynomials in mathematics and physics. (English) Zbl 1533.81062

Summary: In this manuscript, we introduce (symmetric) Tetranacci polynomials \(\xi_j\) as a twofold generalization of ordinary Tetranacci numbers, considering both non unity coefficients and generic initial values. We derive a complete closed form expression for any \(\xi_j\) with the key feature of a decomposition in terms of generalized Fibonacci polynomials. For suitable conditions, \(\xi_j\) can be understood as the superposition of standing waves. The issue of Tetranacci polynomials originated from their application in condensed matter physics. We explicitly demonstrate the approach for the spectrum, eigenvectors, Green’s functions and transmission probability for an atomic tight binding chain exhibiting both nearest and next nearest neighbor processes. We demonstrate that in topological trivial models, complex wavevectors can form bulk states as a result of the open boundary conditions. We describe how effective next nearest neighbor bonding is engineered in state of the art theory/experiment exploiting onsite degrees of freedom and close range hopping. We argue about experimental tune ability and on-demand complex wavevectors.

MSC:

81R30 Coherent states
53D20 Momentum maps; symplectic reduction
81S10 Geometry and quantization, symplectic methods
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
35K45 Initial value problems for second-order parabolic systems
35P15 Estimates of eigenvalues in context of PDEs
35J08 Green’s functions for elliptic equations
35G15 Boundary value problems for linear higher-order PDEs
Full Text: DOI

References:

[1] Vajda, S., Fibonacci and Lucas Numbers and the Golden Section: Theory and Applications (2007), Dover Publications
[2] Hoggatt, V. Jr, Fibonacci and Lucas Numbers (1969), Houghton-Mifflin · Zbl 0198.36903
[3] Horadam, A. F., Am. Math. Mon., 68, 455-9 (1961) · Zbl 0113.26605 · doi:10.1080/00029890.1961.11989696
[4] Andelić, M.; Du, Z.; da Fonseca, C. M.; Kılıç, E., J. Differ. Equ. Appl., 26, 149-62 (2020) · Zbl 1472.39004 · doi:10.1080/10236198.2019.1709180
[5] Webb, W. A.; Parberry, E. A., Fibonacci Q., 7, 457-63 (1969) · Zbl 0211.37303
[6] Hoggatt, V. Jr; Long, C. T., Fibonacci Q., 12, 113-20 (1974) · Zbl 0284.10003
[7] Özvatan, M.; Pashaev, O. K. (2017)
[8] Feinberg, M., Fibonacci Q., 1, 70-74 (1963)
[9] Jishe, F., More identities on the tribonacci numbers, Ars Comb., 100, 73-78 (2011) · Zbl 1265.11023
[10] Hoggatt, V. Jr; Bicknell, M., Fibonacci Q., 11, 457-65 (1973) · Zbl 0274.10022
[11] Hoggatt, V. Jr; Bicknell, M., Fibonacci Q., 11, 399-419 (1973) · Zbl 0274.10021
[12] Waddill, M. E.; Sacks, L., Fibonacci Q., 5, 209-22 (1967) · Zbl 0154.04103
[13] Taşcı, D.; Acar, H., CMA, 8, 379-86 (2017)
[14] Soykan, Y., Int. J. Adv. Appl. Math. Mech., 8, 15-26 (2020) · Zbl 1465.11064
[15] Waddill, M. E., Fibonacci Q., 30, 9-19 (1992)
[16] Singh, B.; Bhadouria, P.; Sikhwal, O.; Sisodiya, K., Gen. Math. Notes, 20, 136-41 (2014)
[17] Hathiwala, G.; Shah, D. V., Math. J. Interdiscip. Sci., 6, 37-48 (2019) · doi:10.15415/mjis.2017.61004
[18] Leumer, N.; Marganska, M.; Muralidharan, B.; Grifoni, M., J. Phys.: Condens. Matter, 32 (2020) · doi:10.1088/1361-648X/ab8bf9
[19] Loginov, A. V.; Pereverzev, Y. V., Low Temp. Phys., 23, 534-40 (1997) · doi:10.1063/1.593419
[20] Kitaev, A., Phys.-Usp., 44, 131-6 (2001) · doi:10.1070/1063-7869/44/10S/S29
[21] Leumer, N.; Grifoni, M.; Muralidharan, B.; Marganska, M., Phys. Rev. B, 103 (2021) · doi:10.1103/PhysRevB.103.165432
[22] Trench, W. F., Linear Algebr. Appl., 64, 199-214 (1985) · Zbl 0568.15005 · doi:10.1016/0024-3795(85)90277-0
[23] Kouachi, S., Appl. Math., 35, 107-20 (2008) · Zbl 1143.15006 · doi:10.4064/am35-1-7
[24] Kouachi, S., Electron. J. Linear Algebr., 15, 115-33 (2006) · Zbl 1097.15011 · doi:10.13001/1081-3810.1223
[25] Yueh, W-C, Appl. Math. E-Notes, 5, 66-74 (2005) · Zbl 1068.15006
[26] Da Fonseca, C. M.; Petronilho, J., Numer. Math., 100, 457-82 (2005) · Zbl 1076.15011 · doi:10.1007/s00211-005-0596-3
[27] Da Fonseca, C. M.; Kowalenko, V., Acta Math. Hung., 160, 376-89 (2019) · Zbl 1449.15012 · doi:10.1007/s10474-019-00970-1
[28] Gover, M. J C., Linear Algebr. Appl., 197-198, 63-78 (1994) · Zbl 0833.15009 · doi:10.1016/0024-3795(94)90481-2
[29] Shin, B. C., Bull. Aust. Math. Soc., 55, 249-54 (1997) · Zbl 0881.15009 · doi:10.1017/S0004972700033918
[30] Flensberg, K.; Bruus, H., Introduction to Many-Body Quantum Theory in Condensed Matter Physics (2004), Oxford Graduate Texts
[31] Leumer, N2021Spectral and transport signatures of 1d topological superconductors of finite size in the sub- and supra-gap regime: an analytical study(available at: doi:10.5283/epub.50905)
[32] Bernevig, A. B.; Hughes, T. L., Topological Insulators and Topological Superconductors (2013), Princeton University Press · Zbl 1269.82001
[33] Altland, A.; Zirnbauer, M. R., Phys. Rev. B, 55, 1142-61 (1997) · doi:10.1103/PhysRevB.55.1142
[34] Aguado, R., La Rivista del Nuovo Cimento, 40, 523 (2017) · doi:10.1393/ncr/i2017-10141-9
[35] Mong, R. S K.; Shivamoggi, V., Phys. Rev. B, 83 (2011) · doi:10.1103/PhysRevB.83.125109
[36] Lieb, E.; Schultz, T.; Mattis, D., Ann. Phys., NY, 16, 407-66 (1961) · Zbl 0129.46401 · doi:10.1016/0003-4916(61)90115-4
[37] Zvyagin, A. A., Low Temp. Phys., 41, 625-9 (2015) · doi:10.1063/1.4928919
[38] Lutchyn, R. M.; Sau, J. D.; Das Sarma, S., Phys. Rev. Lett., 105 (2010) · doi:10.1103/PhysRevLett.105.077001
[39] Oreg, Y.; Refael, G.; von Oppen, F., Phys. Rev. Lett., 105 (2010) · doi:10.1103/PhysRevLett.105.177002
[40] Alicea, J., Rep. Prog. Phys., 75 (2012) · doi:10.1088/0034-4885/75/7/076501
[41] Izumida, W.; Milz, L.; Marganska, M.; Grifoni, M., Phys. Rev. B, 96 (2017) · doi:10.1103/PhysRevB.96.125414
[42] Liu, T-W; Semperlotti, F., Phys. Rev. Appl., 20 (2023) · doi:10.1103/PhysRevApplied.20.014019
[43] Allein, F.; Chaunsali, R.; Anastasiadis, A.; Frankel, I.; Boechler, N.; Diakonos, F.; Theocharis, G. (2022)
[44] Qian, K.; Apigo, D. J.; Padavić, K.; Ahn, K. H.; Vishveshwara, S.; Prodan, C., Phys. Rev. Res., 5 (2023) · doi:10.1103/PhysRevResearch.5.L012012
[45] Ortiz, R.; Giedke, G.; Frederiksen, T., Phys. Rev. B, 107 (2023) · doi:10.1103/PhysRevB.107.L100416
[46] Meir, Y.; Wingreen, N. S., Phys. Rev. Lett., 68, 2512-5 (1992) · doi:10.1103/PhysRevLett.68.2512
[47] Ryndyk, D. A., Theory of Quantum Transport at Nanoscale (2015), Springer
[48] Haug, H.; Jauho, A-P, Quantum Kinetics in Transport and Optics of Semiconductors (1996), Springer
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.