×

Stable finiteness properties of infinite discrete groups. (English) Zbl 1485.55014

Summary: Let \(G\) be an infinite discrete group. A classifying space for proper actions of \(G\) is a proper \(G\)-CW complex \(X\) such that the fixed point sets \(X^H\) are contractible for all finite subgroups \(H\) of \(G\). In this paper we consider the stable analogue of the classifying space for proper actions in the category of proper \(G\)-spectra and study its finiteness properties. We investigate when \(G\) admits a stable classifying space for proper actions that is finite or of finite type and relate these conditions to the compactness of the sphere spectrum in the homotopy category of proper \(G\)-spectra and to classical finiteness properties of the Weyl groups of finite subgroups of \(G\). Finally, if the group \(G\) is virtually torsion-free we also show that the smallest possible dimension of a stable classifying space for proper actions coincides with the virtual cohomological dimension of \(G\), thus providing the first geometric interpretation of the virtual cohomological dimension of a group.

MSC:

55P91 Equivariant homotopy theory in algebraic topology
20J05 Homological methods in group theory
55P42 Stable homotopy theory, spectra

References:

[1] A.Adem, ‘Finite group actions on acyclic 2‐complexes’, Séminaire N. Bourbaki, 2001-2002, exp. no. 894 (Société Mathématique de France, Paris, 2003) 1-17. · Zbl 1062.57039
[2] L. AlonsoTarrío, A. JeremíasLópez and M. J. SoutoSalorio, ‘Construction of \(t\)‐structures and equivalences of derived categories’, Trans. Amer. Math. Soc.355 (2003) 2523-2543. · Zbl 1019.18007
[3] J.Aramayona, D.Degrijse, C.Martínez‐Pérez and J.Souto, ‘Geometric dimension of lattices in classical Lie groups’, J. Topol.10 (2017) 632-667. · Zbl 1376.22011
[4] J.Aramayona and C.Martínez‐Pérez, ‘The proper geometric dimension of the mapping class group’, Algebr. Geom. Topol.14 (2014) 217-227. · Zbl 1354.20025
[5] M.Bestvina and N.Brady, ‘Morse theory and finiteness properties of groups’, Invent. Math.129 (1997) 445-470. · Zbl 0888.20021
[6] R.Bieri and B.Eckmann, ‘Finiteness properties of duality groups’, Comment. Math. Helv.49 (1974) 74-83. · Zbl 0279.20041
[7] N.Brady, I.Leary and B.Nucinkis, ‘On algebraic and geometric dimensions for groups with torsion’, J. Lond. Math. Soc.64 (2001) 489-500. · Zbl 1016.20035
[8] G. E.Bredon, Equivariant cohomology theories, Lecture Notes in Mathematics 34 (Springer, Berlin, 1967). · Zbl 0162.27202
[9] K. S.Brown, Cohomology of groups, Graduate Texts in Mathematics 77 (Springer, Berlin, 1982). · Zbl 0584.20036
[10] M.Davis, The geometry and topology of Coxeter groups, vol. 32 (Princeton University Press, Princeton, NJ, 2008). · Zbl 1142.20020
[11] D.Degrijse, ‘Bredon cohomological dimensions for proper actions and Mackey functors’, Forum Math.27 (2015) 3667-3696. · Zbl 1337.20060
[12] D.Degrijse and C.Martínez‐Pérez, ‘Dimension invariants for groups admitting a cocompact model for proper actions’, J. reine angew. Math.721 (2016) 233-249. · Zbl 1354.55008
[13] D.Degrijse and N.Petrosyan, ‘Geometric dimension of groups for the family of virtually cyclic subgroups’, J. Topol.7 (2014) 697-726. · Zbl 1344.20056
[14] M. J.Dunwoody, ‘Accessibility and groups of cohomological dimension one’, Proc. Lond. Math. Soc. (3) 38 (1979) 193-215. · Zbl 0419.20040
[15] H.Fausk, ‘Equivariant homotopy theory for pro‐spectra’, Geom. Topol.12 (2008) 103-176. · Zbl 1135.55005
[16] E.Floyd and R.Richardson, ‘An action of a finite group on an n‐cell without stationary points’, Bull. Amer. Math. Soc.65 (1959) 73-76. · Zbl 0088.15302
[17] S. I.Gelfand and Y. I.Manin, Methods of homological algebra (Springer, Berlin, 1996). · Zbl 0855.18001
[18] J.Greenlees and J. P.May, Generalized Tate cohomology, Memoirs of the American Mathematical Society 113 (American Mathematical Society, Providence, RI, 1995). · Zbl 0876.55003
[19] M.Hovey, Model categories, Mathematical Surveys and Monographs 63 (American Mathematical Society, Providence, RI, 1999). · Zbl 0909.55001
[20] St. S.John‐Green,‘Cohomological finiteness conditions for Mackey and cohomological Mackey functors’, J. Algebra411 (2014) 225-258. · Zbl 1339.20045
[21] P.Kropholler, C.Martínez‐Pérez and B.Nucinkis, ‘Cohomological finiteness conditions for elementary amenable groups’, J. reine angew. Math.637 (2009) 49-62. · Zbl 1202.20055
[22] P.Kropholler and G.Mislin, ‘Groups acting on finite dimensional spaces with finite stabilizers’, Comment. Math. Helv.73 (1998) 122-136. · Zbl 0927.20033
[23] I. J.Leary and B.Nucinkis, ‘Some groups of type VF’, Invent. Math.151 (2003) 135-162. · Zbl 1032.20035
[24] I. J.Leary and N.Petrosyan, ‘On dimensions of groups with cocompact classifying spaces for proper actions’, Adv. Math.311 (2017) 730-747. · Zbl 1436.20093
[25] L. G.Lewis, Jr., ‘The equivariant Hurewicz map’, Trans. Amer. Math. Soc.329 (1992) 433-472. · Zbl 0769.54042
[26] L. G.Lewis, Jr., J. P.May and J.McClure, ‘Ordinary RO(G)‐graded cohomology’, Bull. Amer. Math. Soc.4 (1981) 208-212. · Zbl 0477.55009
[27] W.Lück, Transformation groups and algebraic K‐theory, Lecture Notes in Mathematics 1408 (Springer, Berlin, 1989). · Zbl 0679.57022
[28] W.Lück, ‘The type of the classifying space for a family of subgroups’, J. Pure Appl. Algebra149 (2000) 177-203. · Zbl 0955.55009
[29] W.Lück, Survey on classifying spaces for families of subgroups, Infinite Groups: Geometric, Combinatorial and Dynamical Aspects (Springer, Berlin, 2005) 269-322. · Zbl 1117.55013
[30] W.Lück and D.Meintrup, ‘On the universal space for group actions with compact isotropy’, Proceedings of the Conference ‘Geometry and Topology’ in Aarhus (1998) 293-305. · Zbl 0979.55010
[31] W.Lück and B.Oliver, ‘The completion theorem in K‐theory for proper actions of a discrete group’, Topology40 (2001) 585-616. · Zbl 0981.55002
[32] W.Lück and H.Reich, ‘The Baum‐Connes and the Farrell‐Jones conjectures in K‐ and L‐theory’, Handbook of K‐theory, vol. 2 (Springer, Berlin, 2005) 703-842. · Zbl 1120.19001
[33] M.Mandell and J. P.May, ‘Equivariant orthogonal spectra and S‐modules’, Mem. Amer. Math. Soc.159 (2002). · Zbl 1025.55002
[34] C.Martínez‐Pérez, ‘Euler classes and Bredon cohomology for groups with restricted families of finite subgroups’, Math. Z.275 (2013) 761-780. · Zbl 1294.20066
[35] C.Martínez‐Pérez and B.Nucinkis, ‘Cohomological dimension of Mackey functors for infinite groups’, J. Lond. Math. Soc.74 (2006) 379-396. · Zbl 1126.20034
[36] C.Martinéz‐Pérez and B.Nucinkis, ‘Bredon cohomological finiteness conditions for generalisations of Thompson groups’, Groups Geom. Dyn.7 (2013) 931-959. · Zbl 1295.20055
[37] J. P.May, Equivariant homotopy and cohomology theory, CBMS Regional Conference Series in Mathematics 91 (American Mathematical Society, Providence, RI, 1996). · Zbl 0890.55001
[38] J. P.May, ‘The Wirthmüller isomorphism revisited’, Theory Appl. Categ.11 (2003) 132-142. · Zbl 1025.55004
[39] B.Nucinkis, ‘Is there an easy algebraic characterisation of universal proper G‐spaces?’, Manuscripta Math.102 (2000) 335-345. · Zbl 0961.18007
[40] S.Schwede, Global homotopy theory, New Mathematical Monographs (Cambridge University Press, Cambridge, to appear). · Zbl 1451.55001
[41] J.Thévenaz and P.Webb, ‘The structure of Mackey functors’, Trans. Amer. Math. Soc.347 (1995) 1865-1961. · Zbl 0834.20011
[42] K.Vogtmann, ‘Automorphisms of free groups and outer space’, Geom. Dedicata94 (2002) 1-31. · Zbl 1017.20035
[43] P.Webb, ‘A guide to Mackey functors’, Handbook of algebra 2 (Elsevier Science & Technology, Amsterdam, 2000) 805-836. · Zbl 0972.19001
[44] C. A.Weibel, ‘An introduction to homological algebra’, Cambridge Stud. Adv. Math.38 (1994). · Zbl 0797.18001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.