×

Nonlinear finite-volume scheme for complex flow processes on corner-point grids. (English) Zbl 1365.76170

Cancès, Clément (ed.) et al., Finite volumes for complex applications VIII – hyperbolic, elliptic and parabolic problems. FVCA 8, Lille, France, June 12–16, 2017. Cham: Springer (ISBN 978-3-319-57393-9/hbk; 978-3-319-57394-6/ebook; 978-3-319-58818-6/set). Springer Proceedings in Mathematics & Statistics 200, 417-425 (2017).
Summary: The numerical simulation of subsurface processes requires efficient and robust methods due to the large scales and the complex geometries involved. In this article, a nonlinear finite-volume scheme is presented and applied to non-isothermal two-phase two-component flow in porous media. The idea of the scheme and the model used for the simulations are outlined and a comparison to a standard scheme used in industrial codes is made. Large-scale offshore CO\(_2\) storage in the Johansen formation serves as a benchmark problem, where it is demonstrated that the new scheme can handle highly complex corner-point grids and reproduces the physical processes with a higher accuracy than the standard discretization scheme.
For the entire collection see [Zbl 1371.65001].

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65N08 Finite volume methods for boundary value problems involving PDEs
35Q30 Navier-Stokes equations

Software:

DuMuX; ISTL
Full Text: DOI

References:

[1] Afanasyev, A.A.: Application of the reservoir simulator MUFITS for 3D modelling of CO2 storage in geological formations. Energy Proced. 40, 365–374 (2013) · doi:10.1016/j.egypro.2013.08.042
[2] Agélas, L., Eymard, R., Herbin, R.: A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media. Compt. Rendus Math. 347(11), 673–676 (2009) · Zbl 1166.65051
[3] Becker, B., Beck, M., Fetzer, T., Flemisch, B., Grüninger, C., Hommel, J., Jambhekar, V., Kissinger, A., Koch, T., Schneider, M., Schröder, N., Schwenck, N.: Dumux 2.7.0 (2015). doi: 10.5281/zenodo.16722
, URL http://dx.doi.org/10.5281/zenodo.16722 · doi:10.5281/zenodo.16722
[4] Blatt, M., Bastian, P.: The Iterative Solver Template Library, pp. 666–675. Springer, Heidelberg (2007)
[5] Blatt, M., Burchardt, A., Dedner, A., Engwer, C., Fahlke, J., Flemisch, B., Gersbacher, C., Gräser, C., Gruber, F., Grüninger, C., Kempf, D., Klöfkorn, R., Malkmus, T., Müthing, S., Nolte, M., Piatkowski, M., Sander, O.: The distributed and unified numerics environment, version 2.4. Arch. Numer. Softw. 4(100), 13–29 (2016)
[6] Class, H., Ebigbo, A., Helmig, R., Dahle, H.K., Nordbotten, J.M., Celia, M.A., Audigane, P., Darcis, M., Ennis-King, J., Fan, Y., Flemisch, B., Gasda, S.E., Jin, M., Krug, S., Labregere, D., Naderi Beni, A., Pawar, R.J., Sbai, A., Thomas, S.G., Trenty, L., Wei, L.: A benchmark study on problems related to CO2 storage in geologic formations. Comput. Geosci. 13(4), 409–434 (2009) · Zbl 1190.86011
[7] Coninck, H., Loos, M., Metz, B., Davidson, O., Meyer, L.: IPCC special report on carbon dioxide capture and storage. Intergovernmental Panel on Climate Change (2005)
[8] Danilov, A., Vassilevski, Y.V.: A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes. Rus. J. Numer. Anal. Math. Model. 24(3), 207–227 (2009) · Zbl 1166.65394
[9] Darcis, M.Y.: Coupling models of different complexity for the simulation of CO2 storage in deep saline aquifers. Ph.D. thesis (2013). URL http://elib.uni-stuttgart.de/opus/volltexte/2013/8141
[10] Eigestad, G.T., Dahle, H.K., Hellevang, B., Riis, F., Johansen, W.T., Øian, E.: Geological modeling and simulation of CO2 injection in the Johansen formation. Comput. Geosci. 13(4), 435–450 (2009) · Zbl 1190.86012 · doi:10.1007/s10596-009-9153-y
[11] Gao, Z., Wu, J.: A second-order positivity-preserving finite volume scheme for diffusion equations on general meshes. SIAM J. Scient. Comput. 37(1), A420–A438 (2015) · Zbl 1315.65077 · doi:10.1137/140972470
[12] Intergovernmental panel on climate change: climate change 2014: mitigation of climate change, vol. 3, Cambridge University Press (2015)
[13] Millington, R.J., Quirk, J.P.: Permeability of porous solids. Trans. Faraday Soc. 57, 1200–1207 (1961) · doi:10.1039/tf9615701200
[14] Schneider, M., Flemisch, B., Helmig, R.: Monotone nonlinear finite-volume method for nonisothermal two-phase two-component flow in porous media. Int. J. Numer. Methods Fluids (2016)
[15] Schneider, M., Flemisch, B., Helmig, R., Terekhov, K., Tchelepi, H.: Monotone nonlinear finite-volume method for challenging grids (2017). (SimTech preprint). URL http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1507
[16] Somerton, W., El-Shaarani, A., Mobarak, S.: High temperature behavior of rocks associated with geothermal type reservoirs. In: SPE California Regional Meeting. Society of Petroleum Engineers (1974) · doi:10.2118/4897-MS
[17] Yuan, G., Sheng, Z.: Monotone finite volume schemes for diffusion equations on polygonal meshes. J. Comput. Phys. 227(12), 6288–6312 (2008) · Zbl 1147.65069 · doi:10.1016/j.jcp.2008.03.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.