×

The deep arbitrary polynomial chaos neural network or how deep artificial neural networks could benefit from data-driven homogeneous chaos theory. (English) Zbl 07755842

Summary: Artificial Intelligence and Machine learning have been widely used in various fields of mathematical computing, physical modeling, computational science, communication science, and stochastic analysis. Approaches based on Deep Artificial Neural Networks (DANN) are very popular in our days. Depending on the learning task, the exact form of DANNs is determined via their multi-layer architecture, activation functions and the so-called loss function. However, for a majority of deep learning approaches based on DANNs, the kernel structure of neural signal processing remains the same, where the node response is encoded as a linear superposition of neural activity, while the non-linearity is triggered by the activation functions. In the current paper, we suggest to analyze the neural signal processing in DANNs from the point of view of homogeneous chaos theory as known from polynomial chaos expansion (PCE). From the PCE perspective, the (linear) response on each node of a DANN could be seen as a 1st degree multi-variate polynomial of single neurons from the previous layer, i.e. linear weighted sum of monomials. From this point of view, the conventional DANN structure relies implicitly (but erroneously) on a Gaussian distribution of neural signals. Additionally, this view revels that by design DANNs do not necessarily fulfill any orthogonality or orthonormality condition for a majority of data-driven applications. Therefore, the prevailing handling of neural signals in DANNs could lead to redundant representation as any neural signal could contain some partial information from other neural signals. To tackle that challenge, we suggest to employ the data-driven generalization of PCE theory known as arbitrary polynomial chaos (aPC) to construct a corresponding multi-variate orthonormal representations on each node of a DANN. Doing so, we generalize the conventional structure of DANNs to Deep arbitrary polynomial chaos neural networks (DaPC NN). They decompose the neural signals that travel through the multi-layer structure by an adaptive construction of data-driven multi-variate orthonormal bases for each layer. Moreover, the introduced DaPC NN provides an opportunity to go beyond the linear weighted superposition of single neurons on each node. Inheriting fundamentals of PCE theory, the DaPC NN offers an additional possibility to account for high-order neural effects reflecting simultaneous interaction in multi-layer networks. Introducing the high-order weighted superposition on each node of the network mitigates the necessity to introduce non-linearity via activation functions and, hence, reduces the room for potential subjectivity in the modeling procedure. Although the current DaPC NN framework has no theoretical restrictions on the use of activation functions. The current paper also summarizes relevant properties of DaPC NNs inherited from aPC as analytical expressions for statistical quantities and sensitivity indexes on each node. We also offer an analytical form of partial derivatives that could be used in various training algorithms. Technically, DaPC NNs require similar training procedures as conventional DANNs, and all trained weights determine automatically the corresponding multi-variate data-driven orthonormal bases for all layers of DaPC NN. The paper makes use of three test cases to illustrate the performance of DaPC NN, comparing it with the performance of the conventional DANN and also with plain aPC expansion. Evidence of convergence over the training data size against validation data sets demonstrates that the DaPC NN outperforms the conventional DANN systematically. Overall, the suggested re-formulation of the kernel network structure in terms of homogeneous chaos theory is not limited to any particular architecture or any particular definition of the loss function. The DaPC NN Matlab Toolbox is available online and users are invited to adopt it for own needs.

MSC:

68T07 Artificial neural networks and deep learning
65Cxx Probabilistic methods, stochastic differential equations
60Hxx Stochastic analysis

Software:

ImageNet; OPQ; aPC; AlexNet; ISLR

References:

[1] Abramowitz, M.; Stegun, I. A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, 1146 (1965), Dover Publications, Inc.: Dover Publications, Inc. New York
[2] Adler, J.; Öktem, O., Solving ill-posed inverse problems using iterative deep neural networks, Inverse Problems, 33, 12, Article 124007 pp. (2017) · Zbl 1394.92070
[3] Aggarwal, C., Neural networks and deep learning: a textbook (2018), Springer · Zbl 1402.68001
[4] Ahlfeld, R.; Belkouchi, B.; Montomoli, F., SAMBA: sparse approximation of moment-based arbitrary polynomial chaos, Journal of Computational Physics, 320, 1-16 (2016) · Zbl 1349.65417
[5] Akhiezer, N., The classical moment problem, Vol. 2 (1965), Hafner Publ. Co.: Hafner Publ. Co. New York
[6] Alkhateeb, O.; Ida, N., Data-driven multi-element arbitrary polynomial chaos for uncertainty quantification in sensors, IEEE Transactions on Magnetics, 54, 3 (2017)
[7] Anthony, M.; Bartlett, P., Neural network learning: theoretical foundations (1999), Cambridge University Press · Zbl 0968.68126
[8] Arık, S.Ö.; Chrzanowski, M.; Coates, A.; Diamos, G.; Gibiansky, A.; Kang, Y., Deep voice: Real-time neural text-to-speech, (International conference on machine learning (2017), PMLR), 195-204
[9] Arjovsky, M.; Shah, A.; Bengio, Y., Unitary evolution recurrent neural networks, (International conference on machine learning (2016), PMLR), 1120-1128
[10] Askey, R.; Wilson, J., (Some basic hypergeometric orthogonal polynomials that generalize jacobi polynomials. Some basic hypergeometric orthogonal polynomials that generalize jacobi polynomials, American mathematical society: memoirs of the american mathematical society (1985), American Mathematical Society) · Zbl 0572.33012
[11] Atkinson, A. C.; Donev, A. N., Optimum experimental designs, Vol. 5 (1992), Clarendon Press · Zbl 0829.62070
[12] Augustin, F.; Gilg, A.; Paffrath, M.; Rentrop, P.; Wever, U., Polynomial chaos for the approximation of uncertainties: Chances and limits, European Journal of Applied Mathematics, 19, 2, 149-190 (2008) · Zbl 1148.65004
[13] Ballard, D. H.; Brown, C. M., Computer vision (1982), Prentice Hall Professional Technical Reference
[14] Barata, J. C.A.; Hussein, M. S., The Moore-Penrose pseudoinverse: A tutorial review of the theory, Brazilian Journal of Physics, 42, 1, 146-165 (2012)
[15] Beckers, F.; Heredia, A.; Noack, M.; Nowak, W.; Wieprecht, S.; Oladyshkin, S., Bayesian calibration and validation of a large-scale and time-demanding sediment transport model, Water Resources Research, 56, 7, Article e2019WR026966 pp. (2020)
[16] Blatman, G.; Sudret, B., Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach, Comptes Rendus Mécanique, 336, 6, 518-523 (2008) · Zbl 1138.74046
[17] Blundell, C.; Cornebise, J.; Kavukcuoglu, K.; Wierstra, D., Weight uncertainty in neural network, (Bach, F.; Blei, D., Proceedings of the 32nd international conference on machine learning, Vol. 37. Proceedings of the 32nd international conference on machine learning, Vol. 37, Proceedings of machine learning research (2015), PMLR: PMLR Lille, France), 1613-1622
[18] Bouwmans, T.; Javed, S.; Sultana, M.; Jung, S. K., Deep neural network concepts for background subtraction: A systematic review and comparative evaluation, Neural Networks, 117, 8-66 (2019)
[19] Buda, M.; Maki, A.; Mazurowski, M. A., A systematic study of the class imbalance problem in convolutional neural networks, Neural Networks, 106, 249-259 (2018)
[20] Bürkner, P.-C.; Kröker, I.; Oladyshkin, S.; Nowak, W., The sparse polynomial chaos expansion: a fully Bayesian approach with joint priors on the coefficients and global selection of terms, Journal of Computational Physics, 488, Article 112210 pp. (2023) · Zbl 07696975
[21] Cameron, R. H.; Martin, W. T., The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals, Annals of Mathematics, 48, 385-392 (1947) · Zbl 0029.14302
[22] Chrysos, G. G., Moschoglou, S., Bouritsas, G., Panagakis, Y., Deng, J., & Zafeiriou, S. (2020). P-nets: Deep Polynomial Neural Networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 7325-7335).
[23] Ciaparrone, G.; Sánchez, F. L.; Tabik, S.; Troiano, L.; Tagliaferri, R.; Herrera, F., Deep learning in video multi-object tracking: A survey, Neurocomputing, 381, 61-88 (2020)
[24] Class, H.; Ebigbo, A.; Helmig, R.; Dahle, H. K.; Nordbotten, J. M.; Celia, M. A., A benchmark study on problems related to co_2 storage in geologic formations, Computational Geosciences, 13, 4, 409 (2009) · Zbl 1190.86011
[25] Cortes, C.; Vapnik, V., Support-vector networks, Machine Learning, 20, 3, 273-297 (1995) · Zbl 0831.68098
[26] Cressie, N. A., (Cressie, N. A.C., Spatial prediction and kriging. Spatial prediction and kriging, Statistics for spatial data (1993), John Wiley & Sons: John Wiley & Sons New York), 105-209
[27] Deng, L. (2011). An Overview of Deep-Structured Learning for Information Processing. In Proc. asian-pacific signal & information proc. annual summit & conference (APSIPA-ASC) (pp. 1-14).
[28] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248-255). http://dx.doi.org/10.1109/CVPR.2009.5206848.
[29] Ernst, O. G.; Mugler, A.; Starkloff, H.-J.; Ullmann, E., On the convergence of generalized polynomial chaos expansions, ESAIM: Mathematical Modelling and Numerical Analysis, 46, 2, 317-339 (2012) · Zbl 1273.65012
[30] Foo, J.; Karniadakis, G., Multi-element probabilistic collocation method in high dimensions, Journal of Computational Physics, 229, 5, 1536-1557 (2010) · Zbl 1181.65014
[31] Gautschi, W., (Orthogonal polynomials: computation and approximation. Orthogonal polynomials: computation and approximation, Numerical mathematics and scientific computation (2004), Oxford University Press: Oxford University Press New York), x+301, Oxford Science Publications · Zbl 1130.42300
[32] Ghanem, R. G.; Spanos, P. D., Stochastic finite elements: a spectral approach (1991), Springer-Verlag: Springer-Verlag New York · Zbl 0722.73080
[33] Gilks, W.; Richardson, S.; Spiegelhalter, D., Markov chain Monte Carlo in practice (1996), Chapmann & Hall: Chapmann & Hall Boca Raton · Zbl 0832.00018
[34] Goodfellow, I.; Bengio, Y.; Courville, A., Deep learning (2016), MIT Press, http://www.deeplearningbook.org · Zbl 1373.68009
[35] Graupe, D., (Principles of artificial neural networks. Principles of artificial neural networks, Advanced series in circuits and systems, vol. 7 (2013), World Scientific Publishing Company: World Scientific Publishing Company Singapore) · Zbl 1273.68001
[36] Hassoun, M., (Fundamentals of artificial neural networks. Fundamentals of artificial neural networks, A Bradford book (1995), MIT Press: MIT Press Cambridge) · Zbl 0850.68271
[37] Hochreiter, S.; Schmidhuber, J., Long short-term memory, Neural Computation, 9, 8, 1735-1780 (1997)
[38] Hornik, K.; Stinchcombe, M.; White, H., Multilayer feedforward networks are universal approximators, Neural Networks, 2, 5, 359-366 (1989) · Zbl 1383.92015
[39] Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K. Q., Densely connected convolutional networks (2018), arXiv:1608.06993
[40] Ioffe, S.; Szegedy, C., Batch normalization: Accelerating deep network training by reducing internal covariate shift (2015)
[41] Ishigami, T., & Homma, T. (1990). An importance quantification technique in uncertainty analysis for computer models. In [1990] proceedings. first international symposium on uncertainty modeling and analysis (pp. 398-403). http://dx.doi.org/10.1109/ISUMA.1990.151285.
[42] Ivakhnenko, A.; Lapa, V., Cybernetics and forecasting techniques (1967)
[43] James, G.; Witten, D.; Hastie, T.; Tibshirani, R., An introduction to statistical learning: with applications in R (2014), Springer Publishing Company, Incorporated: Springer Publishing Company, Incorporated New York
[44] Jeroen, A. W.; Sarkar, S.; Hester, B., Modeling physical uncertainties in dynamic stall induced fluid-structure interaction of turbine blades using arbitrary polynomial chaos, Computers and Structures, 85, 11-14, 866-878 (2007)
[45] Jia, K.; Li, S.; Wen, Y.; Liu, T.; Tao, D., Orthogonal deep neural networks, IEEE Transactions on Pattern Analysis and Machine Intelligence, 43 (2019)
[46] Jia, X.; Willard, J.; Karpatne, A.; Read, J. S.; Zwart, J. A.; Steinbach, M., Physics-guided machine learning for scientific discovery: An application in simulating lake temperature profiles, ACM/IMS Transactions on Data Science, 2, 3 (2021)
[47] Karim, F.; Majumdar, S.; Darabi, H.; Harford, S., Multivariate LSTM-FCNs for time series classification, Neural Networks, 116, 237-245 (2019)
[48] Karlin, S., Total positivity, Vol. I, 576 (1968), Stanford University Press: Stanford University Press Stanford · Zbl 0219.47030
[49] Keese, A.; Matthies, H. G., Sparse quadrature as an alternative to Monte Carlo for stochastic finite element techniques, Proceedings in Applied Mathematics & Mechanics, 3, 493-494 (2003) · Zbl 1354.65013
[50] Kolmogorov, A. N.; Bharucha-Reid, A. T., Foundations of the theory of probability: second english edition (2018), Dover Publications, Inc.: Dover Publications, Inc. New York
[51] Köppel, M., Franzelin, F., Kröker, I., Oladyshkin, S., Santin, G., & Wittwar, D., et al. (2017a). Datasets and executables of data-driven uncertainty quantification benchmark in carbon dioxide storage. http://dx.doi.org/10.5281/zenodo.933827. · Zbl 1414.76058
[52] Köppel, M.; Franzelin, F.; Kröker, I.; Oladyshkin, S.; Santin, G.; Wittwar, D., Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario, Computational Geosciences (2019) · Zbl 1414.76058
[53] Köppel, M.; Kröker, I.; Rohde, C., Intrusive uncertainty quantification for hyperbolic-elliptic systems governing two-phase flow in heterogeneous porous media, Computers & Geosciences, 21, 4, 807-832 (2017) · Zbl 1396.76058
[54] Krige, D. G., A statistical approach to some basic mine valuation problems on the witwatersrand, Journal of the Southern African Institute of Mining and Metallurgy, 52, 6, 119-139 (1951)
[55] Krizhevsky, A.; Sutskever, I.; Hinton, G. E., ImageNet classification with deep convolutional neural networks, Communications of the ACM, 60, 6, 84-90 (2017)
[56] Kröker, I.; Nowak, W.; Rohde, C., A stochastically and spatially adaptive parallel scheme for uncertain and nonlinear two-phase flow problems, Computational Geosciences, 19, 2, 269-284 (2015) · Zbl 1396.65126
[57] Li, H.; Zhang, D., Probabilistic collocation method for flow in porous media: Comparisons with other stochastic methods, Water Resources Research, 43, 9, 1-13 (2007)
[58] Lin, G.; Tartakovsky, A., An efficient, high-order probabilistic collocation method on sparse grids for three-dimensional flow and solute transport in randomly heterogeneous porous media, Advances in Water Resources, 32, 5, 712-722 (2009)
[59] MacKay, D. J., Bayesian interpolation, Neural Computation, 4, 3, 415-447 (1992)
[60] Marquardt, D. W., An algorithm for least-squares estimation of nonlinear parameters, Journal of the Society for Industrial and Applied Mathematics, 11, 2, 431-441 (1963) · Zbl 0112.10505
[61] Matlab, D. W., Version 9.7.0.1216025 (R2019b) (2019), https://www.mathworks.com/help/stats/fitrgp.html
[62] McCarthy, J., Review of the question of artificial intelligence, Annals of the History of Computing, 10, 3, 224-229 (1988)
[63] McCulloch, W. S.; Pitts, W., A logical calculus of the ideas immanent in nervous activity, The Bulletin of Mathematical Biophysics, 5, 4, 115-133 (1943) · Zbl 0063.03860
[64] Mhammedi, Z.; Hellicar, A.; Rahman, A.; Bailey, J., Efficient orthogonal parametrisation of recurrent neural networks using householder reflections, (International conference on machine learning (2017), PMLR), 2401-2409
[65] Mhaskar, H. N., & Micchelli, C. A. (1994). How to choose an activation function. In Advances in neural information processing systems (pp. 319-326). Denver.
[66] Miikkulainen, R.; Liang, J.; Meyerson, E.; Rawal, A.; Fink, D.; Francon, O., Evolving deep neural networks, (Artificial intelligence in the age of neural networks and brain computing (2019), Elsevier), 293-312
[67] Moore, E. H., On the reciprocal of the general algebraic matrix, American Mathematical Society. Bulletin, 26, 394-395 (1920)
[68] Najafabadi, M. M.; Villanustre, F.; Khoshgoftaar, T. M.; Seliya, N.; Wald, R.; Muharemagic, E., Deep learning applications and challenges in big data analytics, Journal of Big Data, 2, 1, 1-21 (2015)
[69] Nakkiran, P.; Kaplun, G.; Bansal, Y.; Yang, T.; Barak, B.; Sutskever, I., Deep double descent: Where bigger models and more data hurt, Journal of Statistical Mechanics: Theory and Experiment, 2021, 12, Article 124003 pp. (2021) · Zbl 1539.68315
[70] Okut, H., Bayesian regularized neural networks for small n big p data, (Artificial neural networks-models and applications (2016), InTech Rijeka, Croatia)
[71] Oladyshkin, S., aPC matlab toolbox: Data-driven arbitrary polynomial chaos (2022), https://www.mathworks.com/matlabcentral/fileexchange/72014-apc-matlab-toolbox-data-driven-arbitrary-polynomial-chaos
[72] Oladyshkin, S., DaPC NN: Deep arbitrary polynomial chaos neural network (2022), https://www.mathworks.com/matlabcentral/fileexchange/112110-dapc-nn-deep-arbitrary-polynomial-chaos-neural-network
[73] Oladyshkin, S.; Class, H.; Helmig, R.; Nowak, W., A concept for data-driven uncertainty quantification and its application to carbon dioxide storage in geological formations, Advances in Water Resources, 34, 1508-1518 (2011)
[74] Oladyshkin, S.; Class, H.; Helmig, R.; Nowak, W., An integrative approach to robust design and probabilistic risk assessment for CO \({}_2\) storage in geological formations, Computers & Geosciences, 15, 3, 565-577 (2011)
[75] Oladyshkin, S.; De Barros, F.; Nowak, W., Global sensitivity analysis: a flexible and efficient framework with an example from stochastic hydrogeology, Advances in Water Resources, 37, 10-22 (2012)
[76] Oladyshkin, S.; Mohammadi, F.; Kroeker, I.; Nowak, W., Bayesian \({}^3\) active learning for the Gaussian process emulator using information theory, Entropy, 22, 8, 890 (2020)
[77] Oladyshkin, S.; Nowak, W., Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion, Reliability Engineering & System Safety, 106, 179-190 (2012)
[78] Oladyshkin, S.; Nowak, W., Incomplete statistical information limits the utility of high-order polynomial chaos expansions, Reliability Engineering & System Safety, 169, 137-148 (2018)
[79] Oladyshkin, S.; Nowak, W., The connection between Bayesian inference and information theory for model selection, information gain and experimental design, Entropy, 21, 11, 1081 (2019)
[80] Papamarkou, T.; Hinkle, J.; Young, M. T.; Womble, D., Challenges in Markov chain Monte Carlo for Bayesian neural networks (2021)
[81] Penrose, R., On best approximate solutions of linear matrix equations, (Mathematical proceedings of the cambridge philosophical society, Vol. 52 (1956), Cambridge University Press), 17-19 · Zbl 0070.12501
[82] Praditia, T.; Karlbauer, M.; Otte, S.; Oladyshkin, S.; Butz, M. V.; Nowak, W., Learning groundwater contaminant diffusion-sorption processes with a finite volume neural network, Water Resources Research, Article e2022WR033149 pp. (2022)
[83] Praditia, T.; Walser, T.; Oladyshkin, S.; Nowak, W., Improving thermochemical energy storage dynamics forecast with physics-inspired neural network architecture, Energies, 13, 15, 3873 (2020)
[84] Rawat, W.; Wang, Z., Deep convolutional neural networks for image classification: A comprehensive review, Neural Computation, 29, 9, 2352-2449 (2017) · Zbl 1476.68245
[85] Red-Horse, J.; Benjamin, A., A probabilistic approach to uncertainty quantification with limited information, Reliability Engineering & System Safety, 85, 1, 183-190 (2004)
[86] Rehme, M. F.; Franzelin, F.; Pflüger, D., B-splines on sparse grids for surrogates in uncertainty quantification, Reliability Engineering & System Safety, 209, Article 107430 pp. (2021)
[87] Ruder, S., An overview of gradient descent optimization algorithms (2017)
[88] Runge, C., Über empirische funktionen und die interpolation zwischen äquidistanten ordinaten, Zeitschrift für Mathematik und Physik, 46, 224-243, 20 (1901) · JFM 32.0272.02
[89] Samuel, A. L., Some studies in machine learning using the game of checkers, IBM Journal of Research and Development, 3, 3, 210-229 (1959)
[90] Schmidhuber, J., Deep learning in neural networks: An overview, Neural Networks, 61, 85-117 (2015)
[91] Schmidhuber, J. (2022). Annotated history of modern AI and deep learning: Technical report IDSIA-22-22,.
[92] Settles, B., Active learning literature surveyComputer sciences technical report 1648 (2009), University of Wisconsin-Madison
[93] Sharma, S.; Sharma, S., Activation functions in neural networks, Towards Data Science, 6, 12, 310-316 (2017)
[94] Shi, B.; Bai, X.; Yao, C., An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 11, 2298-2304 (2016)
[95] Shohat, J.; Tamarkin, J., The problem of moments, mathematical surveys no. 1, Vol. 1950 (1943), American Mathematical Society: American Mathematical Society New York · Zbl 0063.06973
[96] Shustin, P. F.; Ubaru, S.; Kalantzis, V.; Horesh, L.; Avron, H., PCENet: High dimensional surrogate modeling for learning uncertainty (2022)
[97] Siebert, W. M., On the determinants of moment matrices, The Annals of Statistics, 17, 2, 711-721 (1989) · Zbl 0672.62062
[98] Smith, A. F.; Gelfand, A. E., Bayesian statistics without tears: a sampling-resampling perspective, The American Statistician, 46, 2, 84-88 (1992)
[99] Sobol’, I. M., On sensitivity estimation for nonlinear mathematical models, Matematicheskoe Modelirovanie, 2, 1, 112-118 (1990) · Zbl 0974.00506
[100] Sobol’, I. M.; Asotsky, D.; Kreinin, A.; Kucherenko, S., Construction and comparison of high-dimensional Sobol’ generators, Wilmott, 2011, 56, 64-79 (2011)
[101] Stieltjes, T. J., Quelques recherches sur la théorie des quadratures dites méchaniques, Oeuvres I, 377-396 (1884) · JFM 16.0242.02
[102] Sudret, B., Global sensitivity analysis using polynomial chaos expansions, Reliability Engineering & System Safety, 93, 7, 964-979 (2008), Bayesian Networks in Dependability
[103] Sullivan, T., (Introduction to uncertainty quantification. Introduction to uncertainty quantification, Texts in applied mathematics (2015), Springer International Publishing: Springer International Publishing Cham) · Zbl 1336.60002
[104] Tian, C.; Xu, Y.; Zuo, W., Image denoising using deep CNN with batch renormalization, Neural Networks, 121, 461-473 (2020)
[105] Tikhonov, A. N.; Arsenin, V. I.; Arsenin, V., Solutions of ill-posed problems (1977), Vh Winston · Zbl 0354.65028
[106] Tipping, M. E., The relevance vector machine, (Advances in neural information processing systems (2000)), 652-658
[107] Vapnik, V.; Chervonenkis, A., Theory of pattern recognition (1974), Nauka: Nauka Moscow · Zbl 0284.68070
[108] Villadsen, J.; Michelsen, M. L., Solution of differential equation models by polynomial approximation (1978), Prentice-Hall: Prentice-Hall New Jersey · Zbl 0464.34001
[109] Villadsen, J.; Michelsen, M. L., Solution of differential equation models by polynomial approximation(Book), 460 (1978), Prentice-Hall, Inc.: Prentice-Hall, Inc. Englewood Cliffs, N.J., 1978 · Zbl 0464.34001
[110] Vorontsov, E.; Trabelsi, C.; Kadoury, S.; Pal, C., On orthogonality and learning recurrent networks with long term dependencies, (International conference on machine learning (2017), PMLR), 3570-3578
[111] Wang, J., Chen, Y., Chakraborty, R., & Yu, S. X. (2020). Orthogonal convolutional neural networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 11505-11515).
[112] Wiener, N., The homogeneous chaos, American Journal of Mathematics, 60, 4, 897-936 (1938) · JFM 64.0887.02
[113] Wiener, N., (Cybernetics, or control and communication in the animal and the machine. Cybernetics, or control and communication in the animal and the machine, Actualités scientifiques et industrielles [current scientific and industrial topics], No. 1053 (1948), Hermann et Cie., Paris; The Technology Press, Cambridge, Mass.; John Wiley & Sons, Inc., New York), 194
[114] Williams, C. K.; Rasmussen, C. E., Gaussian processes for machine learning, Vol. 2 (2006), MIT press Cambridge, MA · Zbl 1177.68165
[115] Wisdom, S.; Powers, T.; Hershey, J.; Le Roux, J.; Atlas, L., Full-capacity unitary recurrent neural networks, Advances in Neural Information Processing Systems, 29 (2016)
[116] Xiao, L.; Liao, B.; Li, S.; Chen, K., Nonlinear recurrent neural networks for finite-time solution of general time-varying linear matrix equations, Neural Networks, 98, 102-113 (2018) · Zbl 1441.93265
[117] Xiu, D.; Karniadakis, G., The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM Journal on Scientific Computing, 24, 2, 619-644 (2002) · Zbl 1014.65004
[118] Xiu, D.; Karniadakis, G. E., Modeling uncertainty in flow simulations via generalized polynomial chaos, Journal of Computational Physics, 187, 137-167 (2003) · Zbl 1047.76111
[119] Yee, P., & Haykin, S. (1993). Pattern classification as an ill-posed, inverse problem: a regularization approach. In 1993 IEEE international conference on acoustics, speech, and signal processing, Vol. 1 (pp. 597-600). http://dx.doi.org/10.1109/ICASSP.1993.319189.
[120] Zhang, Y.; Liu, Y.; Pau, G.; Oladyshkin, S.; Finsterle, S., Evaluation of multiple reduced-order models to enhance confidence in global sensitivity analyses, International Journal of Greenhouse Gas Control, 49, 217-226 (2016)
[121] Zheng, X.; Zhang, J.; Wang, N.; Tang, G.; Yao, W., Mini-data-driven deep arbitrary polynomial chaos expansion for uncertainty quantification (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.