×

High-order bound-preserving local discontinuous Galerkin methods for incompressible and immiscible two-phase flows in porous media. (English) Zbl 1541.65098

Summary: In this paper, we develop high-order bound-preserving (BP) local discontinuous Galerkin methods for incompressible and immiscible two-phase flows in porous media, and employ implicit pressure explicit saturation (IMPES) methods for time discretization, which is locally mass conservative for both phases. Physically, the saturations of the two phases, \(S_w\) and \(S_n\), should belong to the range of \([0, 1]\). Nonphysical numerical approximations may result in instability of the simulation. Therefore, it is necessary to construct a BP technique to obtain physically relevant numerical approximations. However, the saturation does not satisfy the maximum principle, so most of the existing BP techniques cannot be applied directly. The main idea is to apply the positivity-preserving techniques to both \(S_w\) and \(S_n\), respectively, and enforce \(S_w +S_n =1\) simultaneously. Numerical examples are given to demonstrate the high-order accuracy of the scheme and effectiveness of the BP technique.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage
76T06 Liquid-liquid two component flows
76D45 Capillarity (surface tension) for incompressible viscous fluids
76M10 Finite element methods applied to problems in fluid mechanics
76M20 Finite difference methods applied to problems in fluid mechanics
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI

References:

[1] Arbogast, T.; Juntunen, M.; Pool, J.; Wheeler, MF, A discontinuous Galerkin method for two-phase flow in a porous medium enforcing H(div) velocity and continuous capillary pressure, Comput. Geosci., 17, 6, 1055-1078, 2013 · Zbl 1393.76059 · doi:10.1007/s10596-013-9374-y
[2] Bastian, P., A fully-coupled discontinuous Galerkin method for two-phase flow in porous media with discontinuous capillary pressure, Comput. Geosci., 18, 5, 779-796, 2014 · Zbl 1392.76072 · doi:10.1007/s10596-014-9426-y
[3] Bassi, F.; Rebay, S., A high-order accurate discontinuous finite elementmethod for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131, 267-279, 1997 · Zbl 0871.76040 · doi:10.1006/jcph.1996.5572
[4] Brand, W., Heinemann, J., Aziz, K.: The grid orientation effect in reservoir simulation. In: Symposium on Reservoir Simulation (1991)
[5] Brooks, R.H., Corey, T.: Hydraulic Properties of Porous Media. In: Hydrology Paper (1964)
[6] Celia, MA; Binning, P., A mass conservative numerical solution for two-phase flow in porous media with application to unsaturated flow, Water Resour. Res., 28, 10, 2819-2828, 1992 · doi:10.1029/92WR01488
[7] Chen, Z.; Huang, HY; Yan, J., Third order maximum-principle-satisfying direct discontinuous Galerkin methods for time dependent convection diffusion equations on unstructured triangular meshes, J. Comput. Phys., 308, 198-217, 2016 · Zbl 1351.76052 · doi:10.1016/j.jcp.2015.12.039
[8] Chen, H.; Kou, J.; Sun, S.; Zhang, T., Fully mass-conservative IMPES schemes for incompressible two-phase flow in porous media, Comput. Methods Appl. Mech. Eng., 350, 15, 641-663, 2019 · Zbl 1441.76057 · doi:10.1016/j.cma.2019.03.023
[9] Chen, H.; Sun, S., A new physics-preserving IMPES scheme for incompressible and immiscible two-phase flow in heterogeneous porous media, J. Comput. Appl. Math., 381, 2020 · Zbl 1446.65107 · doi:10.1016/j.cam.2020.113035
[10] Chuenjarern, N.; Xu, Z.; Yang, Y., High-order bound-preserving discontinuous Galerkin methods for compressible miscible displacements in porous media on triangular meshes, J. Comput. Phys., 378, 110-128, 2019 · Zbl 1416.76100 · doi:10.1016/j.jcp.2018.11.003
[11] Class, H.; Ebigbo, A.; Helmig, R., A benchmark study on problems related to CO2 storage in geologic formations, Comput. Geosci., 13, 4, 409-434, 2009 · Zbl 1190.86011 · doi:10.1007/s10596-009-9146-x
[12] Coats, K.; Thomas, K.; Pierson, R., Compositional and black oil reservoir simulation, SPE Reserv. Eval. Eng, 1, 4, 372-379, 1998 · doi:10.2118/50990-PA
[13] Cockburn, B.; Shu, C., The Runge-Kutta discontinuous Galerkin method for conservative laws V: Multidimensional systems, J. Comput. Phys., 141, 199-224, 1998 · Zbl 0920.65059 · doi:10.1006/jcph.1998.5892
[14] Cockburn, B.; Shu, C., The local discontinuous Galerkin finite element method for convection-diffusion systems, SIAM J. Numer. Anal., 35, 6, 2440-2463, 1998 · Zbl 0927.65118 · doi:10.1137/S0036142997316712
[15] Dawson, CN; Klie, H.; Wheeler, MF; Woodward, CS, A parallel, implicit, cell-centered method for two-phase flow with a preconditioned Newton-krylov solver, Comput. Geosci., 1, 215-249, 1997 · Zbl 0941.76062 · doi:10.1023/A:1011521413158
[16] Droniou, J., Finite volume schemes for diffusion equations: introduction to and review of modern methods, Math. Models Methods Appl. Sci., 24, 8, 1575-1619, 2014 · Zbl 1291.65319 · doi:10.1142/S0218202514400041
[17] Du, J.; Yang, Y., Maximum-principle-preserving third-order local discontinuous Galerkin methods on overlapping meshes, J. Comput. Phys., 377, 117-141, 2019 · Zbl 1416.65346 · doi:10.1016/j.jcp.2018.10.034
[18] Epshteyn, Y.; Riviere, B., On the solution of incompressible two-phase flow by a p-version discontinuous Galerkin method, Commun. Numer. Meth. Eng., 22, 741-751, 2006 · Zbl 1115.76047 · doi:10.1002/cnm.846
[19] Epshteyn, Y.; Riviere, B., Fully implicit discontinuous finite element methods for two-phase flow, Appl. Numer. Math., 338, 57, 383-401, 2007 · Zbl 1370.76085 · doi:10.1016/j.apnum.2006.04.004
[20] Ern, A.; Mozolevski, I.; Schuh, L., Discontinuous Galerkin approximation of two-phase flows in heterogeneous porous media with discontinuous capillary pressures, Comput. Methods Appl. Mech. Eng., 199, 23-24, 1491-1501, 2010 · Zbl 1231.76143 · doi:10.1016/j.cma.2009.12.014
[21] Feng, WJ; Guo, H.; Kang, Y.; Yang, Y., Bound-preserving discontinuous Galerkin methods with second-order implicit pressure explicit concentration time marching for compressible miscible displacements in porous media, J. Comput. Phys., 463, 2022 · Zbl 07536754 · doi:10.1016/j.jcp.2022.111240
[22] Feng, WJ; Guo, H.; Tian, L.; Yang, Y., Sign-preserving second-order IMPEC time discretization and its application in compressible miscible displacement with Darcy-Forchheimer models, J. Comput. Phys., 474, 2023 · Zbl 07640541 · doi:10.1016/j.jcp.2022.111775
[23] Frank, J.; Hundsdorfer, W.; Verwer, JG, On the stability of implicit-explicit linear multistep methods, Appl. Numer. Math., 25, 193-205, 1997 · Zbl 0887.65094 · doi:10.1016/S0168-9274(97)00059-7
[24] Gottlieb, S.; Ketcheson, D.; Shu, CW, High order strong stability preserving time discretizations, J. Sci. Comput., 38, 251-289, 2009 · Zbl 1203.65135 · doi:10.1007/s10915-008-9239-z
[25] Gottlieb, S.; Shu, CW; Tadmor, E., Strong stability-preserving high-order time discretization methods, SIAM Rev., 43, 89-112, 2001 · Zbl 0967.65098 · doi:10.1137/S003614450036757X
[26] Guo, H.; Feng, WJ; Xu, ZY; Yang, Y., Conservative numerical methods for the reinterpreted discrete fracture model on non-conforming meshes and their applications in contaminant transportation in fractured porous media, Adv. Water Resour., 153, 7, 103951.1-103951.16, 2021
[27] Guo, H.; Yang, Y., Bound-preserving discontinuous Galerkin method for compressible miscible displacement in porous media, SIAM J. Sci. Comput., 39, A1969-A1990, 2017 · Zbl 1457.65108 · doi:10.1137/16M1101313
[28] Helmig, R., Multiphase Flow and Transport Processes in the Subsurface, A Contribution to the Modeling of Hydrosystems, Environmental Engineering, 1997, Berlin: Springer, Berlin
[29] Hoteit, H.; Firoozabadi, A., Numerical modeling of two-phase flow in heterogeneous permeable media with different capillarity pressures, Adv. Water Resour., 31, 1, 56-73, 2008 · doi:10.1016/j.advwatres.2007.06.006
[30] Hou, J.; Chen, J.; Sun, S.; Chen, Z., Adaptive mixed-hybrid and penalty discontinuous Galerkin method for two-phase flow in heterogeneous media, J. Comput. Appl. Math., 307, 262-263, 2016 · Zbl 1382.76166 · doi:10.1016/j.cam.2016.01.050
[31] Hundsdorfer, W.; Ruuth, SJ, IMEX Extensions of linear multistep methods with general monotonicity and boundedness properties, J. Comput. Phys., 225, 2016-2042, 2007 · Zbl 1123.65068 · doi:10.1016/j.jcp.2007.03.003
[32] Jamei, M.; Ghafouri, H., A novel discontinuous Galerkin model for two-phase flow in porous media using an improved IMPES method, Internat, J. Numer. Methods Heat Fluid Flow, 26, 1, 284-306, 2016 · Zbl 1356.76166 · doi:10.1108/HFF-01-2015-0008
[33] Jo, G.; Kwak, DY, An IMPES scheme for a two-phase flow in heterogeneous porous media using a structured grid, Comput. Methods Appl. Mech. Eng., 317, 684-701, 2017 · Zbl 1439.74427 · doi:10.1016/j.cma.2017.01.005
[34] Joshaghani, MS; Riviere, B.; Sekachev, M., Maximum-principle-satisfying discontinuous Galerkin methods for incompressible two-phase immiscible flow, Comput. Methods Appl. Mech. Eng., 391, 2022 · Zbl 1507.76110 · doi:10.1016/j.cma.2021.114550
[35] Klieber, W.; Riviere, B., Adaptive simulations of two-phase flow by discontinuous Galerkin methods, Comput. Methods Appl. Mech. Eng., 196, 404-419, 2006 · Zbl 1120.76327 · doi:10.1016/j.cma.2006.05.007
[36] Koto, T., Stability of implicit-explicit linear multistep methods for ordinary and delay differential equations, Front. Math. China., 4, 113-129, 2009 · Zbl 1396.65114 · doi:10.1007/s11464-009-0005-9
[37] Kou, J.; Sun, S.; Wu, Y., A semi-analytic porosity evolution scheme for simulating wormhole propagation with the Darcy-Brinkman-Forchheimer model, J. Comput. Appl. Math., 348, 401-420, 2019 · Zbl 1404.65175 · doi:10.1016/j.cam.2018.08.055
[38] Michel, A., A finite volume scheme for the simulation of two-phase incompressible flow in porous media, SIAM J. Numer. Anal., 41, 1301-1317, 2003 · Zbl 1049.35018 · doi:10.1137/S0036142900382739
[39] Monteagudo, JEP; Firoozabadi, A., Comparison of fully implicit and IMPES formulations for simulation of water injection in fractured and unfractured media, Int. J. Numer. Methods Eng., 69, 698-728, 2007 · Zbl 1194.76160 · doi:10.1002/nme.1783
[40] Nacul, E., Aziz, K.: Use of irregular grid in reservoir simulation, Annual technical conference and exhibition (1991)
[41] Oden, J.; Babuska, I.; Baumann, C., A discontinuous hp finite element method for diffusion problems, J. Comput. Phys., 146, 491-519, 1998 · Zbl 0926.65109 · doi:10.1006/jcph.1998.6032
[42] Qin, T.; Shu, CW; Yang, Y., Bound-preserving discontinuous Galerkin methods for relativistic hydrodynamics, J. Comput. Phys., 315, 323-347, 2016 · Zbl 1349.83037 · doi:10.1016/j.jcp.2016.02.079
[43] Reed, WH; Hill, TR, Triangular Mesh Method for the Neutron Transport Equation, Technical Report LA-UR-73-479, 1973, Los Alamos, NM: Los Alamos Scientific Laboratory, Los Alamos, NM
[44] Riviere, B.; Wheeler, M.; Girault, V., Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems, Comput. Geosci., 8, 337-360, 1999 · Zbl 0951.65108 · doi:10.1023/A:1011591328604
[45] Riviere, B.: Numerical study of a discontinuous Galerkin method for incompressible two-phase flow. In: ECCOMAS Proceedings (2004)
[46] Wang, X.; Tchelepi, HA, Trust-region based solver for nonlinear transport in heterogeneous porous media, J. Comput. Phys., 253, 114-137, 2013 · Zbl 1349.76406 · doi:10.1016/j.jcp.2013.06.041
[47] Weir, GJ; Kissling, WM, The influence of airflow on the vertical infiltration of water into soil, Water Resour. Res., 28, 10, 2765-2772, 1992 · doi:10.1029/92WR00803
[48] Wu, Y.; Qin, G., A generalized numerical approach for modeling multiphase flow and transport in fractured porous media, Commun. Comput. Phys., 6, 85-108, 2009 · Zbl 1364.76142 · doi:10.4208/cicp.2009.v6.p85
[49] Xing, Y.; Zhang, X.; Shu, CW, Positivity preserving high order well balanced discontinuous Galerkin methods for the shallow water equations, Adv. Water Resour., 33, 1476-1493, 2010 · doi:10.1016/j.advwatres.2010.08.005
[50] Yang, Y.; Wei, D.; Shu, CW, Discontinuous Galerkin method for Krause’s consensus models and pressureless Euler equations, J. Comput. Phys., 252, 109-127, 2013 · Zbl 1349.65497 · doi:10.1016/j.jcp.2013.06.015
[51] Yang, Y.; Shu, CW, Discontinuous Galerkin method for hyperbolic equations involving \(\delta \)-singularities: negative-order norm error estimates and applications, Numer. Math., 124, 753-781, 2013 · Zbl 1273.65152 · doi:10.1007/s00211-013-0526-8
[52] Yang, H.; Yang, C.; Sun, S., Active-set reduced-space methods with nonlinear elimination for two-phase flow problems in porous media, SIAM J. Sci. Comput., 38, B593-B618, 2016 · Zbl 1383.76384 · doi:10.1137/15M1041882
[53] Yang, H.; Sun, S.; Yang, C., Nonlinearly preconditioned semismooth Newton methods for variational inequality solution of two-phase flow in porous media, J. Comput. Phys., 332, 1-20, 2017 · Zbl 1378.76115 · doi:10.1016/j.jcp.2016.11.036
[54] Yang, H.; Sun, S.; Li, Y.; Yang, C., A scalable fully implicit framework for reservoir simulation on parallel computers, Comput. Methods Appl. Mech. Eng., 330, 334-350, 2018 · Zbl 1439.76103 · doi:10.1016/j.cma.2017.10.016
[55] Zhang, X.; Shu, CW, On maximum-principle-satisfying high order schemes for scalar conservation laws, J. Comput. Phys., 229, 9, 3091-3120, 2010 · Zbl 1187.65096 · doi:10.1016/j.jcp.2009.12.030
[56] Zhang, X.; Shu, CW, On positivity preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes, J. Comput. Phys., 229, 8918-8934, 2010 · Zbl 1282.76128 · doi:10.1016/j.jcp.2010.08.016
[57] Zhang, X.; Shu, CW, Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms, J. Comput. Phys., 230, 1238-1248, 2011 · Zbl 1391.76375 · doi:10.1016/j.jcp.2010.10.036
[58] Zhang, X.; Xia, Y.; Shu, CW, Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes, J. Sci. Comput., 50, 29-62, 2012 · Zbl 1247.65131 · doi:10.1007/s10915-011-9472-8
[59] Zhang, Y.; Zhang, X.; Shu, CW, Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection-diffusion equations on triangular meshes, J. Comput. Phys., 234, 295-316, 2013 · Zbl 1284.65140 · doi:10.1016/j.jcp.2012.09.032
[60] Zhao, X.; Yang, Y.; Seyler, C., A positivity-preserving semi-implicit discontinuous Galerkin scheme for solving extended magnetohydrodynamics equations, J. Comput. Phys., 278, 400-367, 2014 · Zbl 1349.76296 · doi:10.1016/j.jcp.2014.08.044
[61] Zidane, A.; Firoozabadi, A., An implicit numerical model for multicomponent compressible two-phase flow in porous media, Adv. Water Resour., 85, 64-78, 2015 · doi:10.1016/j.advwatres.2015.09.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.