×

High-resolution finite element methods for 3D simulation of compositionally triggered instabilities in porous media. (English) Zbl 1395.65087

Summary: The formation and development of patterns in the unstable interface between an injected fluid and hydrocarbons or saline aqueous phase in a porous medium can be driven by viscous effects and gravity. Numerical simulation of the so-called fingering is a challenge, which requires rigorous representation of the fluid flow and thermodynamics as well as highresolution discretization in order to minimize numerical artifacts. To achieve such a high resolution, we present higherorder 3D finite element methods for the simulation of fully compositional, three-phase and multi-component flow. This is based on a combination of the mixed hybrid finite element (MHFE) method for total fluid velocity and discontinuous Galerkin (DG) method for the species transport. The phase behavior is described by cubic or cubic-plus-association (CPA) equations of state. We present challenging numerical examples of compositionally triggered fingering at both the core and the large scale. Four additional test cases illustrate the robustness and efficiency of the proposed methods, which demonstrate their power for problems of this complexity. Results reveal three orders of magnitude improvement in CPU time in our method compared with the lowest-order finite difference method for some of the examples. Comparison between 3D and 2D results highlights the significance of dimensionality in the flow simulation.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage
76T30 Three or more component flows
86-08 Computational methods for problems pertaining to geophysics

Software:

DuMuX; TOUGH
Full Text: DOI

References:

[1] Homsy, GM, Viscous fingering in porous media, Annu. Rev. Fluid Mech., 19, 271-311, (1987) · doi:10.1146/annurev.fluid.19.1.271
[2] DeWit, A; Homsy, GM, Viscous fingering in periodically heterogeneous porous media.1. formulation and linear instability, J. Chem. Phys., 107, 9609-9618, (1997) · doi:10.1063/1.475258
[3] DeWit, A; Homsy, GM, Viscous fingering in periodically heterogeneous porous media.2. numerical simulations, J. Chem. Phys., 107, 9619-9628, (1997) · doi:10.1063/1.475259
[4] Manickam, O; Homsy, GM, Simulation of viscous fingering in miscible displacement with monotonic viscosity profiles, Phys. Fluids, 6, 95-107, (1994) · Zbl 0922.76168 · doi:10.1063/1.868049
[5] Zimmerman, WB; Homsy, GM, 3-dimensional viscous fingering - a numerical study, Phys. Fluids A: Fluid Dyn., 4, 1901-1914, (1992) · Zbl 0763.76022 · doi:10.1063/1.858361
[6] Craster, RV; Matar, OK, Dynamics and stability of thin liquid films, Rev. Mod. Phys., 81, 1131-1198, (2009) · doi:10.1103/RevModPhys.81.1131
[7] Heussler, FHC; Oliveira, RM; John, MO; Meiburg, E, Three-dimensional Navier-Stokes simulations of buoyant, vertical miscible Hele-Shaw displacements, J. Fluid Mech., 752, 157-183, (2014) · Zbl 1431.76017 · doi:10.1017/jfm.2014.327
[8] Nittmann, J; Daccord, G; Stanley, HE, Fractal growth of viscous fingers - quantitative characterization of a fluid instability phenomenon, Nature, 314, 141-144, (1985) · doi:10.1038/314141a0
[9] Oron, A; Davis, SH; Bankoff, SG, Long-scale evolution of thin liquid films, Rev. Mod. Phys., 69, 931-980, (1997) · doi:10.1103/RevModPhys.69.931
[10] Pau, GS; Bell, JB; Pruess, K; Almgren, AS; Lijewski, MJ; Zhang, K, High resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers, Adv. Water Resour., 33, 443-455, (2010) · doi:10.1016/j.advwatres.2010.01.009
[11] Thompson, AB; Juel, A; Hazel, AL, Multiple finger propagation modes in Hele-Shaw channels of variable depth, J. Fluid Mech., 746, 123-164, (2014) · doi:10.1017/jfm.2014.100
[12] Class, H; Ebigbo, A; Helmig, R; Dahle, HK; Nordbotten, JM; Celia, MA; Audigane, P; Darcis, M; Ennis-King, J; Fan, YQ; Flemisch, B; Gasda, SE; Jin, M; Krug, S; Labregere, D; Beni, AN; Pawar, RJ; Sbai, A; Thomas, SG; Trenty, L; Wei, LL, A benchmark study on problems related to CO2 storage in geologic formations, Comput. Geosci., 13, 409-434, (2009) · Zbl 1190.86011 · doi:10.1007/s10596-009-9146-x
[13] Gerritsen, MG; Durlofsky, LJ, Modeling fluid flow in oil reservoirs, Annu. Rev. Fluid Mech., 37, 211-238, (2005) · Zbl 1082.76107 · doi:10.1146/annurev.fluid.37.061903.175748
[14] Coats, KH, A note on IMPES and some IMPES-based simulation models, SPE J., 5, 245-251, (2000) · doi:10.2118/65092-PA
[15] Thomas, GW; Thurnau, DH, Reservoir simulation using adaptive implicit method, SPE J., 23, 759-768, (1983) · doi:10.2118/10120-PA
[16] CMG: GEM (generalized equation-of-state model compositional reservoir simulator) user guide (2012)
[17] Schlumberger: Eclipse technical description. In (2007)
[18] Flemisch, B; Darcis, M; Erbertseder, K; Faigle, B; Lauser, A; Mosthaf, K; Müthing, S; Nuske, P; Tatomir, A; Wolff, M; Helmig, R, Dumux: dune for multi-{phase, component, scale, physics,...} flow and transport in porous media, Adv. Water Resour., 34, 1102-1112, (2011) · doi:10.1016/j.advwatres.2011.03.007
[19] Robinson, BA; Viswanathan, HS; Valocchi, AJ, Efficient numerical techniques for modeling multicomponent ground-water transport based upon simultaneous solution of strongly coupled subsets of chemical components, Adv. Water Resour., 23, 307-324, (2000) · doi:10.1016/s0309-1708(99)00034-2
[20] Cao, H.: Development of techniques for general purpose simulators. PhD, Stanford University (2002)
[21] Jiang, Y.: Techniques for modeling complex reservoirs and advanced wells. PhD, Stanford University (2007)
[22] Arbogast, T; Wheeler, MF, A characteristics-mixed finite element method for advection-dominated transport problems, SIAM J. Numer. Anal., 32, 404-424, (1995) · Zbl 0823.76044 · doi:10.1137/0732017
[23] Okuno, R; Johns, RT; Sepehrnoori, K, Three-phase flash in compositional simulation using a reduced method, SPE J., 15, 1-15, (2010) · doi:10.2118/125226-PA
[24] Wang, W; Kosakowski, G; Kolditz, O, A parallel finite element scheme for thermo-hydro-mechanical (THM) coupled problems in porous media, Comput. Geosci., 35, 1631-1641, (2009) · doi:10.1016/j.cageo.2008.07.007
[25] Wheeler, J., Wheeler, M.: Integrated parallel and accurate reservoir simulator. In. University of Texas at Austin (2001) · Zbl 1201.86005
[26] Pruess, K, The TOUGH codes—a family of simulation tools for multiphase flow and transport processes in permeable media, Vadose Zone J., 3, 738-746, (2004) · doi:10.2113/3.3.738
[27] Zidane, A; Firoozabadi, A, An efficient numerical model for multicomponent compressible flow in fractured porous media, Adv. Water Resour., 74, 127-147, (2014) · doi:10.1016/j.advwatres.2014.08.010
[28] Jackson, M., Gomes, J., Mostaghimi, P., Percival, J., Tollit, B., Pavlidis, D., Pain, C., El-Sheikh, A., Muggeridge, A., Blunt, M.: Reservoir modeling for flow simulation using surfaces, adaptive unstructured meshes and control-volume-finite-element methods. Paper presented at the SPE Reservoir Simulation Symposium, The Woodlands, Texas, USA
[29] Jackson, M., Hampson, G., El-Sheikh, A., Saunders, J., Graham, G., Massart, B.: Surface-based reservoir modelling for flow simulation. Geol. Soc. Lond. Spec. Publ., 387 (2013)
[30] Blunt, M; Rubin, B, Implicit flux limiting schemes for petroleum reservoir simulation, J. Comput. Phys., 102, 194-209, (1992) · Zbl 0775.76109 · doi:10.1016/S0021-9991(05)80015-4
[31] Liu, J., Delshad, M., Pope, G.A., Sepehrnoori, K.: Application of higher order flux-limited methods in compositional simulation. J. Transport Porous Media 16(1-29) (1994)
[32] Todd, MR; O’Dell, PM; Hirasaki, GJ, Methods for increased accuracy in numerical reservoir simulators, Soc. Pet. Eng. J., 12, 515-529, (1972) · doi:10.2118/3516-PA
[33] Mikyska, J; Firoozabadi, A, Implementation of higher-order methods for robust and efficient compositional simulation, J. Comput. Phys., 229, 2898-2913, (2010) · Zbl 1307.76053 · doi:10.1016/j.jcp.2009.12.022
[34] Coats, KH, An equation of state compositional model, SPE J., 20, 363-376, (1980) · doi:10.2118/8284-PA
[35] Ewing, R.E., Heinemann, R.F.: Incorporation of mixed finite element methods in compositional simulation for reduction of numerical dispersion. Paper presented at the SPE Reservoir Simulation Symposium, San Francisco, CA, USA, 15-18 November 1983
[36] Scovazzi, G; Gerstenberger, A; Collis, SS, A discontinuous Galerkin method for gravity-driven viscous fingering instabilities in porous media, J. Comput. Phys., 233, 373-399, (2013) · Zbl 1286.76152 · doi:10.1016/j.jcp.2012.09.003
[37] Riaz, A., Hesse, M., Tchelepi, H.A., Orr, F.M.: Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. J. Fluid Mech. 548(87-111) (2006)
[38] Myint, PC; Firoozabadi, A, Onset of convection with fluid compressibility and interface movement, Phys. Fluids, 25, 094105, (2013) · doi:10.1063/1.4821743
[39] Myint, PC; Firoozabadi, A, Onset of buoyancy-driven convection in Cartesian and cylindrical geometries, Phys. Fluids, 25, 044105, (2013) · doi:10.1063/1.4801930
[40] Moortgat, J; Li, Z; Firoozabadi, A, Three-phase compositional modeling of CO2 injection by higher-order finite element methods with CPA equation of state for aqueous phase, Water Resour. Res., 48, w12511, (2012) · doi:10.1029/2011WR011736
[41] Moortgat, J; Firoozabadi, A, Fickian diffusion in discrete-fractured media from chemical potential gradients and comparison to experiment, Energy Fuel, 27, 5793-5805, (2013) · doi:10.1021/ef401141q
[42] Leahy-Dios, A; Firoozabadi, A, Unified model for nonideal multicomponent molecular diffusion coefficients, AlChE J., 53, 2932-2939, (2007) · doi:10.1002/aic.11279
[43] Darlow, B.L., Ewing, R.E., Wheeler, M.: Mixed finite element methods for miscible displacement in porous media. Paper presented at the 6th SPE Reservoir Simulation Symposium, New Orlean, LA, USA
[44] Hoteit, H; Firoozabadi, A, Simple phase stability-testing algorithm in the reduction method, Aiche J., 52, 2909-2920, (2006) · doi:10.1002/aic.10908
[45] Acs, G; Doleschall, E; Farkas, E, General purpose compositional model, SPE J., 25, 543-553, (1985) · doi:10515-PA
[46] Moortgat, J; Sun, S; Firoozabadi, A, Compositional modeling of three-phase flow with gravity using higher-order finite element methods, Water Resour. Res., 47, w05511, (2011) · doi:10.1029/2010WR009801
[47] Li, Z; Firoozabadi, A, General strategy for stability testing and phase-split calculation in two and three phases, SPE J., 17, 1096-1107, (2012) · doi:SPE-129844-PP
[48] Robinson, Peng, D.-Y.: The characterization of the heptanes and heavier fractions for the GPA Peng-Robinson programs. Gpa Research Report / Rr : 28. Gas Processors Association, Tulsa, Okla (1978)
[49] Li, Z; Firoozabadi, A, Cubic-plus-association (cpa) equation of state for water-containing mixtures: is ’cross association’ necessary?, AIChE J., 55, 1803-1813, (2009) · doi:10.1002/aic.11784
[50] Stone, H, Probability model for estimating three-phase relative permeability, J. Petrol. Technol., 214, 214-218, (1970) · doi:10.2118/2116-PA
[51] Stone, H, Estimation of three-phase relative permeability and residual oil data, J. Can. Petrol. Technol., 12, 53-61, (1973)
[52] Hoteit, H; Firoozabadi, A, Compositional modeling by the combined discontinuous Galerkin and mixed methods, SPE J., 11, 19-34, (2006) · doi:10.2118/90276-PA
[53] Hoteit, H; Ackerer, P; Mose, R; Erhel, J; Philippe, B, New two-dimensional slope limiters for discontinuous Galerkin methods on arbitrary meshes, International Journal for Numerical Methods in Engineering, 61, 2566-2593, (2004) · Zbl 1075.76575 · doi:10.1002/nme.1172
[54] Birkhoff, G., Rota, G.-C.: Ordinary differential equations, 6th edn. Wiley, New York (1989) · Zbl 0183.35601
[55] Hoteit, H; Firoozabadi, A, An efficient numerical model for incompressible two-phase flow in fractured media, Adv. Water Resour., 31, 891-905, (2008) · doi:10.1016/j.advwatres.2008.02.004
[56] Moortgat, J; Firoozabadi, A; Li, Z; Esposito, R, CO2 injection in vertical and horizontal cores: measurements and numerical simulation, SPE J., 18, 331-344, (2013) · doi:10.2118/135563-PA
[57] Moortgat, J., Firoozabadi, A.: Three-phase compositional modeling with capillarity in heterogeneous and fractured media. SPE J. (2013) · Zbl 1349.65471
[58] Moortgat, J; Firoozabadi, A, Higher-order compositional modeling of three-phase flow in 3d fractured porous media based on cross-flow equilibrium, J. Comput. Phys., 250, 425-445, (2013) · Zbl 1349.65471 · doi:10.1016/j.jcp.2013.05.009
[59] Ahmed, T; Nasrabadi, H; Firoozabadi, A, Complex flow and composition path in CO2 injection schemes from density effects, Energy Fuel, 26, 4590-4598, (2012) · doi:10.1021/ef300502f
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.