×

Global implicit solver for multiphase multicomponent flow in porous media with multiple gas components and general reactions. Global implicit solver for multiple gas components. (English) Zbl 1489.86004

Summary: In order to study the efficiency of the various forms of trapping including mineral trapping scenarios for \(\mathrm{CO_2}\) storage behavior in deep layers of porous media, highly nonlinear coupled diffusion-advection-reaction partial differential equations (PDEs) including kinetic and equilibrium reactions modeling the miscible multiphase multicomponent flow have to be solved. We apply the globally fully implicit PDE reduction method (PRM) developed 2007 by Kräutle and Knabner for one-phase flow, which was extended 2019 to the case of two-phase flow with a pure gas in the study of Brunner and Knabner. We extend the method to the case of an arbitrary number of gases in gaseous phase, because \(\mathrm{CO_2}\) is not the only gas that threats the climate, and usually is accompanied by other climate killing gases. The application of the PRM leads to an equation system consisting of PDEs, ordinary differential equations, and algebraic equations. The Finite Element discretized / Finite Volume stabilized equations are separated into a local and a global system but nevertheless coupled by the resolution function and evaluated with the aid of a nested Newton solver, so our solver is fully global implicit. For the phase disappearance, we use persistent variables which lead to a semismooth formulation that is solved with a semismooth Newton method. We present scenarios of the injection of a mixture of various gases into deep layers, we investigate phase change effects in the context of various gases, and study the mineral trapping effects of the storage technique. The technical framework also applies to other fields such as nuclear waste storage or oil recovery.

MSC:

86-08 Computational methods for problems pertaining to geophysics
76M10 Finite element methods applied to problems in fluid mechanics
76M12 Finite volume methods applied to problems in fluid mechanics
76N15 Gas dynamics (general theory)
76S05 Flows in porous media; filtration; seepage
76V05 Reaction effects in flows

References:

[1] Amir, L.; Kern, M., A global method for coupling transport with chemistry in heterogeneous porous media, Comput. Geosci., 14, 3, 465-481 (2010) · Zbl 1425.76231 · doi:10.1007/s10596-009-9162-x
[2] Bear, J.; Bachmat, Y., Introduction to Modeling of Transport Phenomena in Porous Media (1990), New York: Springer, New York · Zbl 0743.76003 · doi:10.1007/978-94-009-1926-6
[3] Beck, M.; Rinaldi, AP; Flemisch, B.; Class, H., Accuracy of fully coupled and sequential approaches for modeling hydro- and geomechanical processes, Comput Geosci, 24, 1707-1723 (2020) · Zbl 1439.86013 · doi:10.1007/s10596-020-09987-w
[4] Becker, B.; Guo, B.; Bandilla, K.; Celia, M.; Flemisch, B.; Helmig, R., An adaptive multiphysics model coupling vertical equilibrium and full multidimensions for multiphase flow in porous media, Water Resour. Res., 54, 7, 4347-4360 (2018) · doi:10.1029/2017WR022303
[5] Brooks, R., Corey, A.: Hydraulic properties of porous media. Colorado State University Hydro paper No. 5. doi:10.13031/2013.40684 (1964)
[6] Brunner, F.; Knabner, P., A global implicit solver for miscible reactive multiphase multicomponent flow in porous media, Comput. Geosci., 23, 1, 127-148 (2019) · Zbl 1411.76159 · doi:10.1007/s10596-018-9788-7
[7] Brunner, F., Frank, F., Knabner, P.: FV upwind stabilization of FE discretizations for advection-diffusion problems. In: Fuhrmann, J., Ohlberger, M., Rohde, C. (eds.) Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects. doi:10.1007/978-3-319-05684-5∖_16, pp 177-185. Springer International Publishing (2014) · Zbl 1298.65133
[8] Carrayrou, J., Looking for some reference solutions for the reactive transport benchmark of momas with specy, Comput. Geosci., 14, 393-403 (2010) · Zbl 1425.76235 · doi:10.1007/s10596-009-9161-y
[9] Carrayrou, J.; Hoffmann, J.; Knabner, P.; Kräutle, S.; de Dieuleveult, C.; Erhel, J.; van der Lee, J.; Lagneau, V.; Mayer, K.; MacQuarrie, K., Comparison of numerical methods for simulating strongly nonlinear and heterogeneous reactive transport problems—the momas benchmark case, Comput. Geosci., 14, 3, 483-502 (2010) · Zbl 1426.76723 · doi:10.1007/s10596-010-9178-2
[10] Carrayrou, J.; Kern, M.; Knabner, P., Reactive transport benchmark of momas, Comput. Geosci., 14, 385-392 (2010) · Zbl 1425.76236 · doi:10.1007/s10596-009-9157-7
[11] Ccp (co2 capture project) co2 trapping mechanisms (2015). https://www.co2captureproject.org/co2_trapping.html
[12] Ccp - co2 capture project 2019 annual report (2020). https://www.co2captureproject.org/pubdownload.php?downid=241
[13] Class, H.; Ebigbo, A.; Helmig, R., A benchmark study on problems related to co2 storage in geologic formations, Comput. Geosci., 13, 409 (2009) · Zbl 1190.86011 · doi:10.1007/s10596-009-9146-x
[14] Darcis, M. Y.: Coupling models of different complexity for the simulation of co2 storage in deep saline aquifers. dissertation, Mitteilungen / Institut für Wasser- und Umweltsystemmodellierung, Universitä,t Stuttgart 218. doi:10.18419/opus-481 (2013)
[15] de Dieuleveult, C.; Erhel, J., A global approach to reactive transport: application to the momas benchmark, Comput. Geosci., 14, 3, 451-464 (2010) · Zbl 1425.76294 · doi:10.1007/s10596-009-9163-9
[16] Duan, Z.; Moeller, N.; Weare, JH, An equation of state for the ch4 co2 h2o system: i. Pure systems from 0 to 1000 c and 0 to 8000 bar, Geochim. Cosmochim. Acta, 56, 7, 2605-2617 (1992) · doi:10.1016/0016-7037(92)90347-L
[17] Emami-Meybodi, H.; Hassanzadeh, H.; Green, C.; Ennis-King, J., Convective dissolution of co2 in saline aquifers: progress in modeling and experiments, Int. J. Greenhouse Gas Control, 40, 238-266 (2015) · doi:10.1016/j.ijggc.2015.04.003
[18] Ennis-King, J.; Paterson, L., Role of convective mixing in the long-term storage of carbon dioxide in deep saline formations, SPE J., 10, 349-356 (2005) · doi:10.2118/84344-PA
[19] Fenghour, A.; Wakeham, WA, The viscosity of carbon dioxide, J. Phys. Chem. Ref. Data, 27, 1, 31-44 (1998) · doi:10.1063/1.556013
[20] Garcia, J. E.: Density of aqueous solutions of co2. Lawrence Berkeley National Laboratory. doi:10.2172/790022 (2001)
[21] Garcia, J.: Fluid dynamics of carbon dioxide disposal into saline aquifers. PhD thesis, Lawrence Berkeley National Laboratory (2003)
[22] Gärttner, S., Frolkovic, P., Knabner, P., Ray, N.: Efficiency and accuracy of micro-macro models for mineral dissolution. Water Resour. Res. 56 (2020). doi:10.1029/2020WR027585. CRIS-Team Scopus Importer:2020-09-04
[23] Gaus, I.; Audigane, P.; Andre, L.; Lions, J.; Jacquemet, N.; Durst, P.; Czernichowski-Lauriol, I.; Azaroual, M., Geochemical and solute transport modelling for co2 storage, what to expect from it?, Int. J. Greenhouse Gas Control, 2, 605-625 (2008) · doi:10.1016/j.ijggc.2008.02.011
[24] Goerke, U.; Park, C.; Wang, W.; Singh, A.; Kolditz, O., Numerical simulation of multiphase hydromechanical processes induced by co 2 injection into deep saline aquifers, Oil Gas Sci. Technol., 66, 105-118 (2011) · doi:10.2516/ogst/2010032
[25] Hammond, G.; Lichtner, P.; Lu, C., Subsurface multiphase flow and multicomponent reactive transport modeling using high- performance computing, J. Phys. Conf. Ser., 78, 1, 012025 (2007) · doi:10.1088/1742-6596/78/1/012025
[26] Hau, Y., Sun, Y., Nitao, J.: Overview of nuft: a versatile numerical model for simulating flow and reactive transport in porous media. In: Zhang, F., Yeh, G.-T., Parker, J.C (eds.) Groundwater Reactive Transport Models. doi:10.2174/978160805306311201010212, pp 212-239, Bentham Science Publishers (2012)
[27] Henry, W., Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures, Phil. Trans. R. Soc. Lond., 93, 29-274 (1803)
[28] Hoffmann, J.; Kräutle, S.; Knabner, P., A parallel global-implicit 2-d solver for reactive transport problems in porous media based on a reduction scheme and its application to the MoMaS benchmark problem, Comput. Geosci., 14, 3, 421-433 (2010) · Zbl 1425.76240 · doi:10.1007/s10596-009-9173-7
[29] Hoffmann, J.; Kräutle, S.; Knabner, P., A general reduction scheme for reactive transport in porous media, Comput. Geosci., 16, 4, 1081-1099 (2012) · doi:10.1007/s10596-012-9304-4
[30] Hornung, U., Homogenization and Porous Media. Interdisciplinary Applied Mathematics (1997), New York: Springer, New York · Zbl 0872.35002 · doi:10.1007/978-1-4612-1920-0
[31] Kanzow, C., Inexact semismooth newton methods for large-scale complementarity problems, Optim. Methods Softw., 19, 3-4, 309-325 (2004) · Zbl 1141.90558 · doi:10.1080/10556780310001636369
[32] Kempka, T.; De Lucia, M.; Kühn, M., https://doi.org/10.1016/j.egypro.2014.11.361. https://www.sciencedirect.com/science/article/pii/S1876610214021766. 12th International Conference on Greenhouse Gas Control Technologies, GHGT-12, Energy Procedia, 63, 3330-3338 (2014) · doi:10.1016/j.egypro.2014.11.361
[33] Knodel, M.M., Kräutle, S., Knabner, P.: Global implicit solver for multiphase multicomponent flow in porous media with multiple gas components and general reactions. Preprint Server Erlangen, extended version of paper. https://www1.am.uni-erlangen.de/research/preprint/pr414.pdf (2021) · Zbl 1454.65166
[34] Kräutle, S., The semismooth newton method for multicomponent reactive transport with minerals, Adv. Water Resour., 34, 1, 137-151 (2011) · doi:10.1016/j.advwatres.2010.10.004
[35] Kräutle, S.; Knabner, P., A reduction scheme for coupled multicomponent transport-reaction problems in porous media: Generalization to problems with heterogeneous equilibrium reactions, Water Resour. Res., 43, 3, W03429 (2007) · doi:10.1029/2005WR004465
[36] Kuo, C.; Benson, S., Numerical and analytical study of effects of small scale heterogeneity on co 2 /brine multiphase flow system in horizontal corefloods, Adv. Water Resour., 79, 1-17 (2015) · doi:10.1016/j.advwatres.2015.01.012
[37] Lagneau, V.; Lee, JVD, Hytec results of the momas reactive transport benchmark, Comput. Geosci., 14, 435-449 (2010) · Zbl 1425.76247 · doi:10.1007/s10596-009-9159-5
[38] Lauser, A.; Hager, C.; Helmig, R.; Wohlmuth, B., A new approach for phase transitions in miscible multi-phase flow in porous media, Adv. Water Resour., 34, 957-966 (2011) · doi:10.1016/j.advwatres.2011.04.021
[39] Le Gallo, Y., Trenty, L., Michel, A., Vidal-Gilbert, S., Parra, T., Jeannin, L.: Long-term flow simulations of Co 2 storage in saline aquifer. In: Proceedings GHGT8 Confer, Trondheim (Norway), pp 18-22 (2006)
[40] Leal, A.; Blunt, M.; LaForce, T., A robust and efficient numerical method for multiphase equilibrium calculations: application to co 2 brine rock systems at high temperatures, pressures and salinities, Adv. Water Resour., 62, 409-430 (2013) · doi:10.1016/j.advwatres.2013.02.006
[41] Leal, A.; Blunt, M.; LaForce, T., Efficient chemical equilibrium calculations for geochemical speciation and reactive transport modelling, Geochim. Cosmochim. Acta, 131, 301-322 (2014) · doi:10.1016/j.gca.2014.01.038
[42] Lee, H.; Kim, H.; Shi, Y.; Keffer, D.; Lee, C., Competitive adsorption of co 2/ch 4 mixture on dry and wet coal from subcritical to supercritical conditions, Chem. Eng. J., 230, 93-101 (2013) · doi:10.1016/j.cej.2013.06.036
[43] Lei, H.; Li, J.; Li, X.; Jiang, Z., Numerical modeling of co-injection of n 2 and o 2 with co 2 into aquifers at the tongliao ccs site, Int. J. Greenhouse Gas Control, 54, 228-241 (2016) · doi:10.1016/j.ijggc.2016.09.010
[44] Lu, C., Lichtner, P.: Pflotran: massively parallel 3D simulator for Co2 sequestration in geologic media. In: DOE-NETL Fourth Ann Confer Carbon Capture and Sequestration (2005)
[45] Mayer, K.; MacQuarrie, K., Solution of the momas reactive transport benchmark with min3p-modelformulation and simulation results, Comput. Geosci., 14, 405-419 (2010) · Zbl 1426.76690 · doi:10.1007/s10596-009-9158-6
[46] Millington, RJ; Quirk, JP, Permeability of porous solids, Trans. Faraday Soc., 57, 1200-1207 (1961) · doi:10.1039/tf9615701200
[47] Molins, S.; Knabner, P., Multiscale approaches in reactive transport modeling, Rev. Mineral. Geochem., 85, 27-48 (2019) · doi:10.2138/rmg.2019.85.2
[48] Neumann, R.; Bastian, P.; Ippisch, O., Modeling and simulation of two-phase two-component flow with disappearing nonwetting phase, Comput. Geosci., 17, 1, 139-149 (2013) · Zbl 1356.76384 · doi:10.1007/s10596-012-9321-3
[49] Nordbotten, JM; Celia, MA, Geological Storage of co2 Modeling Approaches for Large-Scale Simulation (2012), New York: Wiley, New York
[50] Nordbotten, J.; Kavetski, D.; Celia, M.; Bachu, S., Model for co2 leakage including multiple geological layers and multiple leaky wells, Environ. Sci. Technol., 43, 743-749 (2008) · doi:10.1021/es801135v
[51] Nordbotten, J.; Flemisch, B.; Gasda, S.; Nilsen, H.; Fan, Y.; Pickup, G.; Wiese, B.; Celia, M.; Dahle, H.; Eigestad, G.; Pruess, K., Uncertainties in practical simulation of co2 storage, Int. J. Greenhouse Gas Control, 9, 234-242 (2012) · doi:10.1016/j.ijggc.2012.03.007
[52] Saaltink, M.; Carrera, J.; Ayora, C., A comparison of two approaches for reactive transport modelling, J. Geochem. Explor., 69-70, 97-101 (2000) · doi:10.1016/S0375-6742(00)00012-1
[53] Sin, I., Corvisier, J.: Impact of co-injected impurities on hydrodynamics of co 2 injection. studying interplayed chromatographic partitioning and density driven flow and fate of the injected mixed gases: numerical and experimental results. In: Proceedings of the 14th Greenhouse Gas Control Technologies Conference, Melbourne (2018)
[54] Sin, I.; Corvisier, J., Multiphase multicomponent reactive transport and flow modeling, Rev. Mineral. Geochem., 85, 143-195 (2019)
[55] Sin, I.; Lagneau, V.; Corvisier, J., Integrating a compressible multicomponent two-phase flow into an existing reactive transport simulator, Adv. Water Resour., 100, 62-77 (2017) · doi:10.1016/j.advwatres.2016.11.014
[56] Sin, I.; Lagneau, V.; Windt, LD; Corvisier, J., 2d simulation of natural gas reservoir by two-phase multicomponent reactive flow and transport—description of a benchmarking exercise, Math. Comput. Simul., 137, 431-447 (2017) · Zbl 1540.76212 · doi:10.1016/j.matcom.2016.12.003
[57] Spycher, N.; Pruess, K., Co2-h2o mixtures in the geological sequestration of co2. ii. partitioning in chloride brines at 12-100∘C and up to 600 bar, Geochim. Cosmochim. Acta, 69, 13, 3309-3320 (2005) · doi:10.1016/j.gca.2005.01.015
[58] Valocchi, AJ; Malmstead, M., Accuracy of operator splitting for advection-dispersion-reaction problems, Water Resour. Res., 28, 5, 1471-1476 (1992) · doi:10.1029/92WR00423
[59] van Genuchten, MT, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 5, 892-898 (1980) · doi:10.2136/sssaj1980.03615995004400050002x
[60] Vidotto, E.; Helmig, R.; Schneider, M.; Wohlmuth, B., Streamline method for resolving sharp fronts for complex two-phase flow in porous media, Comput. Geosci., 22, 6, 1487-1502 (2018) · Zbl 1404.86010 · doi:10.1007/s10596-018-9767-z
[61] Wieners, C., A geometric data structure for parallel finite elements and the application to multigrid methods with block smoothing, Comput. Vis. Sci., 13, 4, 161-175 (2010) · Zbl 1216.65164 · doi:10.1007/s00791-010-0135-3
[62] Wolff, M.; Cao, Y.; Flemisch, B.; Helmig, R.; Wohlmuth, B., Multi-point flux approximation L-method in 3D: numerical convergence and application to two-phase flow through porous media, Radon Ser. Comput. Appl. Math. De Gruyter, 12, 39-80 (2013) · Zbl 1302.76117
[63] Xu, T., Sonnenthal, E., Spycher, N., Zhang, G., Zheng, L., Pruess, K.: Toughreact: a simulation program for subsurface reactive chemical transport under non-isothermal multiphase flow conditions. In: Zhang, F, Yeh, G.-T., Parker, J.C. (eds.) Groundwater Reactive Transport Models. doi:10.1016/j.cageo.2005.06.014, pp 74-95, Bentham Science Publishers (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.