×

A generalized cubic equation of state with application to pure CO\(_2\) injection in aquifers. (English) Zbl 1392.86003

Summary: A generalized cubic equation of state is given. The Peng-Robinson and the Soave-Redlich-Kwong equations are special cases of this equation. The generalized equation of state is precisely as simple and computationally efficient as these classical equations. Through comparison with the Span-Wagner equation for CO\(_2\), we obtain an improved density accuracy in predefined temperature-pressure domains. The generalized equation is then verified through two relevant examples of CO\(_2\) injection and migration. Comparisons are made with other standard cubic EOS in order to show the range of solutions obtained with less accurate EOS.

MSC:

86-08 Computational methods for problems pertaining to geophysics
86A05 Hydrology, hydrography, oceanography
76S05 Flows in porous media; filtration; seepage
Full Text: DOI

References:

[1] Aavatsmark, I.: Mathematische Einführung in die Thermodynamik der Gemische. Akademie Verlag, Berlin (1995) · Zbl 0829.73001
[2] Abbott, MM, Cubic equations of state, AIChE J., 19, 596-601, (1973) · doi:10.1002/aic.690190327
[3] Adachi, Y; Lu, BC-Y; Sugie, H, A four parameter equation of state, Fluid Phase Equilibr., 11, 29-48, (1983) · doi:10.1016/0378-3812(83)85004-3
[4] Altunin, V.V.: Teplofizičeskie svojstva dvuokisi ugleroda. Moskva, Izdatel’stvo standartov (1975)
[5] Bachu, S, Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change, Environ. Geol., 44, 277-289, (2003) · doi:10.1007/s00254-003-0762-9
[6] Bell, IH; Wronski, J; Quoilin, S; Lemort, V, Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library, CoolProp. Ind. Eng. Chem. Res., 53, 2498-2508, (2014) · doi:10.1021/ie4033999
[7] Bielinski, A.: Numerical simulation of CO_{2} sequestration in geological formations. PhD diss, University of Stuttgart, Germany (2006). http://elib.uni-stuttgart.de/opus/volltexte/2007/2953/
[8] Class, H; Ebigbo, A; Helmig, R; Dahle, HK; Nordbotten, JM; Celia, MA; Audigane, P; Darcis, M; Ennis-King, J; Fan, Y; Flemisch, B; Gasda, SE; Jin, M; Krug, S; Labregere, D; Naderi Beni, A; Pawar, RJ; Sbai, A; Thomas, SG; Trenty, L; Wei, L, A benchmark study on problems related to CO2 storage in geologic formations, Comput. Geosci., 13, 409-434, (2009) · Zbl 1190.86011 · doi:10.1007/s10596-009-9146-x
[9] Edmister, W.C., Lee, B.I.: Applied Hydrocarbon Thermodynamics. I. Gulf Publishing Company, Houston (1984)
[10] Eiken, O., Ringrose, P., Hermanrud, C., Nazarian, B., Torp, T.A., Hier, L.: Lessons learned from 14 years of CCS operations: Sleipner. In Salah and Snøhvit. Energy Procedia, 4 (2011)
[11] Fenghour, A; Wakeham, WA; Vesovic, V, The viscosity of carbon dioxide, J. Phys. Chem. Ref. Data, 27, 31-44, (1998) · doi:10.1063/1.556013
[12] Flemisch, B; Darcis, M; Erbertseder, K; Faigle, B; Lauser, A; Mosthaf, K; Müthing, S; Nuske, P; Tatomir, A; Wolff, M; Helmig, R, Dumux: DUNE for multi-{phase, component, scale, physics,...} flow and transport in porous media, Adv. Water Resour., 34, 1102-1112, (2011) · doi:10.1016/j.advwatres.2011.03.007
[13] Fletcher, R.: A modified Marquardt subroutine for non-linear least squares. Technical Report AERE - R 6799, Atomic Energy Research Establishment, Harwell (1971)
[14] Gasda, S.E., Nilsen, H.M., Dahle, H.K.: Upscaled models for CO_{2} migration in geological formations with structural heterogeneity. In: Proceedings of 13th European Conference on the Mathematics of Oil Recovery. Biarritz (2012)
[15] Lie, KA; Krogstad, S; Ligaarden, IS; Natvig, JR; Nilsen, HM; Skaflestad, B, Open-source MATLAB implementation of consistent discretisations on complex grids, Comput. Geosci., 16, 297-322, (2012) · Zbl 1348.86002 · doi:10.1007/s10596-011-9244-4
[16] Nordbotten, JM; Flemisch, B; Gasda, SE; Nilsen, HM; Fan, Y; Pickup, GE; Wiese, B; Celia, MA; Dahle, HK; Eigestad, GT; Pruess, K, Uncertainties in practical simulation of CO2 storage, Int. J. Greenhouse Gas Control, 9, 234-242, (2012) · doi:10.1016/j.ijggc.2012.03.007
[17] Pedersen, KS; Milter, J; Sørensen, H, Cubic equations of state applied to HT/HP and highly aromatic fluids, SPE J., 9, 186-192, (2004) · doi:10.2118/88364-PA
[18] Péneloux, A; Rauzy, E; Frèze, R, A consistent correction for redlich-Kwong-soave volumes, Fluid Phase Equilibr., 8, 7-23, (1982) · doi:10.1016/0378-3812(82)80002-2
[19] Peng, DY; Robinson, DB, A new two-constant equation of state, Ind. Eng. Chem. Fundam., 15, 59-64, (1976) · doi:10.1021/i160057a011
[20] Pruess, K., Oldenburg, C., Moridis, G.: TOUGH2 User’s guide, Version 2. Technical Report LBNL-43134, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (2012)
[21] Redlich, O; Kwong, JNS, On the thermodynamics of solutions. V: an equation of state. fugacities of gaseous solutions, Chem. Rev., 44, 233-244, (1949) · doi:10.1021/cr60137a013
[22] Robinson, D.B., Peng, D.Y.: The characterization of heptanes and heavier fractions for the GPA Peng-Robinson programs. Report RR-28, Gas Processors Association, Tulsa (1978)
[23] Soave, G, Equilibrium constants from a modified redlich-Kwong equation of state, Chem. Eng. Sci., 27, 1197-1203, (1972) · doi:10.1016/0009-2509(72)80096-4
[24] Span, R; Wagner, W, A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 mpa, J. Phys. Chem. Ref. Data, 25, 1509-1596, (1996) · doi:10.1063/1.555991
[25] Spycher, N; Pruess, K, A phase-partitioning model for CO2-brine mixtures at elevated temperatures and pressures: application to CO2-enhanced geothermal systems, Transp. Porous Med., 82, 173-196, (2010) · doi:10.1007/s11242-009-9425-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.