×

Strong convergence theorems for variational inequalities and relatively weak nonexpansive mappings. (English) Zbl 1228.47061

Summary: We introduce an iterative sequence for finding a common element of the set of fixed points of a relatively weak nonexpansive mapping and the set of solutions of a variational inequality in a Banach space. Our results extend and improve the recent ones announced by J.-L. Li [J. Math. Anal. Appl. 295, No. 1, 115–126 (2004; Zbl 1045.49008)], J.-H. Fan [J. Math. Anal. Appl. 337, No. 2, 1041–1047 (2008; Zbl 1140.49011)], and many others.

MSC:

47J25 Iterative procedures involving nonlinear operators
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47H05 Monotone operators and generalizations
47J05 Equations involving nonlinear operators (general)
Full Text: DOI

References:

[1] Alber Ya.: Metric and generalized projection operators in Banach spaces: properties and applications. In: Kartsatos, A. (eds) Theory and Applications of Nonlinear Operators of Monotonic and Accretive Type, pp. 15–50. Marcel Dekker, New York (1996) · Zbl 0883.47083
[2] Alber Ya., GuerreDelabriere S.: On the projection methods for fixed point problems. Analysis 21, 17–39 (2001)
[3] Alber Ya., Notik A.: On some estimates for projection operator in Banach space. Comm. Appl. Nonlinear Anal. 2, 47–56 (1995) · Zbl 0867.49010
[4] Alber Ya., Reich S.: An iterative method for solving a class of nonlinear operator equations in Banach spaces. Panamer. Math. J. 4, 39–54 (1994) · Zbl 0851.47043
[5] Chang S.-s.: On Chidumes open questions and approximate solutions of multivalued strongly accretive mapping in Banach spaces. J. Math. Anal. Appl. 216, 94–111 (1997) · Zbl 0909.47049 · doi:10.1006/jmaa.1997.5661
[6] Chidume C.E., Li J.: Projection methods for approximating fixed points of Lipschitz suppressive operators. Panamer. Math. J. 15, 29–40 (2005) · Zbl 1086.47018
[7] Chidume C.E.: Iterative solutions of nonlinear equations in smooth Banach spaces. Nonlinear Anal. 26, 1823–1834 (1996) · Zbl 0868.47039 · doi:10.1016/0362-546X(94)00368-R
[8] Li J.: On the existence of solutions of variational inequalities in Banach spaces. J. Math. Anal. Appl. 295, 115–126 (2004) · Zbl 1045.49008 · doi:10.1016/j.jmaa.2004.03.010
[9] Jianghua F.: A Mann type iterative scheme for variational inequalities in noncompact subsets of Banach spaces. J. Math. Anal. Appl. 337, 1041–1047 (2008) · Zbl 1140.49011 · doi:10.1016/j.jmaa.2007.04.025
[10] Kohasaka F., Takahashi W.: Strong convergence of an iterative sequence for maximal monotone operators in Banach spaces. Abstr. Appl. Anal. 2004(3), 239–249 (2004) · Zbl 1064.47068 · doi:10.1155/S1085337504309036
[11] Li J.: The generalized projection operator on reflexive Banach spaces and its applications. J. Math. Anal. Appl. 306, 55–71 (2005) · Zbl 1129.47043 · doi:10.1016/j.jmaa.2004.11.007
[12] Butanriu D., Reich S., Zaslavski A.J.: Asymtotic behavior of relatively nonexpansive opera- tors in Banach spaces. J. Appl. Anal. 7, 151–174 (2001) · Zbl 1010.47032 · doi:10.1515/JAA.2001.151
[13] Butanriu D., Reich S., Zaslavski A.J.: Weakly convergence of orbits of nonlinear operators in reflexive Banach spaces. Numer. Funct. Anal. Optim. 24, 489–508 (2003) · Zbl 1071.47052 · doi:10.1081/NFA-120023869
[14] Matsushita S.-y., Takahashi W.: A strong convergence theorem for relatively nonexpansive mappings in a Banach space. J. Approx. Theory 134, 257–266 (2005) · Zbl 1071.47063 · doi:10.1016/j.jat.2005.02.007
[15] Xu H.K.: Inequalities in Banach spaces with applications. Nonlinear Anal. 16, 1127–1138 (1991) · Zbl 0757.46033 · doi:10.1016/0362-546X(91)90200-K
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.