×

Merit functions and error bounds for constrained mixed set-valued variational inequalities via generalized \(f\)-projection operators. (English) Zbl 1346.90669

Summary: In this paper, we introduce and investigate a constrained mixed set-valued variational inequality (MSVI) in Hilbert spaces. We prove the solution set of the constrained MSVI is a singleton under strict monotonicity. We also propose four merit functions for the constrained MSVI, that is, the natural residual, gap function, regularized gap function and D-gap function. We further use these functions to obtain error bounds, i.e. upper estimates for the distance to solutions of the constrained MSVI under strong monotonicity and Lipschitz continuity. The approach exploited in this paper is based on the generalized \(f\)-projection operator due to Wu and Huang, but not the well-known proximal mapping.

MSC:

90C25 Convex programming
90C30 Nonlinear programming
Full Text: DOI

References:

[1] Ekeland I, Convex analysis and variational problems (1976)
[2] DOI: 10.1155/S1110757X02106012 · Zbl 1029.47043 · doi:10.1155/S1110757X02106012
[3] DOI: 10.1016/0362-546X(92)90125-X · Zbl 0768.49008 · doi:10.1016/0362-546X(92)90125-X
[4] DOI: 10.1016/j.orl.2008.03.007 · Zbl 1154.58307 · doi:10.1016/j.orl.2008.03.007
[5] DOI: 10.1016/j.ejor.2009.07.006 · Zbl 1181.91148 · doi:10.1016/j.ejor.2009.07.006
[6] DOI: 10.1007/s11590-013-0635-4 · Zbl 1321.90138 · doi:10.1007/s11590-013-0635-4
[7] DOI: 10.1017/S0004972700038892 · Zbl 1104.47053 · doi:10.1017/S0004972700038892
[8] DOI: 10.1016/j.camwa.2007.01.029 · Zbl 1151.47057 · doi:10.1016/j.camwa.2007.01.029
[9] DOI: 10.1016/0893-9659(93)90125-7 · Zbl 0797.49022 · doi:10.1016/0893-9659(93)90125-7
[10] Alber YI, Funct. Differ. Eq. Israel Sem 1 pp 1– (1994)
[11] DOI: 10.1016/j.na.2008.08.008 · Zbl 1219.47110 · doi:10.1016/j.na.2008.08.008
[12] DOI: 10.1007/978-1-4899-0289-4_11 · doi:10.1007/978-1-4899-0289-4_11
[13] DOI: 10.1007/BF02614322 · Zbl 0887.90165 · doi:10.1007/BF02614322
[14] DOI: 10.1007/0-306-48332-7_206 · doi:10.1007/0-306-48332-7_206
[15] DOI: 10.1007/BF02032131 · Zbl 0844.90069 · doi:10.1007/BF02032131
[16] DOI: 10.1142/S0217595907001309 · Zbl 1141.49303 · doi:10.1142/S0217595907001309
[17] DOI: 10.1007/BF01582255 · Zbl 0734.90098 · doi:10.1007/BF01582255
[18] Facchinei F, Finite-dimensional variational inequalities and complementarity problems I and II (2003) · Zbl 1062.90002
[19] DOI: 10.1016/S0022-247X(02)00554-1 · Zbl 1036.49020 · doi:10.1016/S0022-247X(02)00554-1
[20] DOI: 10.1142/9789812777096 · doi:10.1142/9789812777096
[21] Moreau JJ, Bull. Soc. Math. France 93 pp 273– (1965) · Zbl 0136.12101 · doi:10.24033/bsmf.1625
[22] DOI: 10.1137/0314056 · Zbl 0358.90053 · doi:10.1137/0314056
[23] Auslender A, Optimization, methodés numériques (1976)
[24] DOI: 10.1080/01630568908816335 · Zbl 0678.49010 · doi:10.1080/01630568908816335
[25] DOI: 10.1007/BF01585696 · Zbl 0756.90081 · doi:10.1007/BF01585696
[26] DOI: 10.1007/BF01585171 · Zbl 0813.90117 · doi:10.1007/BF01585171
[27] Peng JM, Math. Program 78 pp 347– (1997)
[28] DOI: 10.1023/A:1022660704427 · Zbl 0879.90180 · doi:10.1023/A:1022660704427
[29] DOI: 10.1023/A:1026506516738 · Zbl 1168.49303 · doi:10.1023/A:1026506516738
[30] DOI: 10.1007/BF02191990 · Zbl 0824.90131 · doi:10.1007/BF02191990
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.