×

Stability of parametric quasivariational inequality of the Minty type. (English) Zbl 1233.90263

The parametric problem of Minty-type quasivariational inequalities under consideration is to find \(u_0\in K(x,u_0)\bigcap A\) such that \( \langle t, u-u_0\rangle\leq 0 \) for all \(v\in K(x,u_0)\) and \(t\in T(x,v)\). Here, \((x,y)\in X\times Y\) where the set \(X\subset\mathbb{R}^n\) is nonempty and closed, \(A\) is a closed convex subset of \(Y=\mathbb{R}^m\), and \(K\) and \(T\) are set-valued mappings defined on \( X\times Y\) with values in \(2^Y\). The map \(K\) is supposed to be closed-valued. The solution set, \(M(x)\), is assumed to be non-empty in a neighborhood of \(x=x_0\).
The authors present a number of results showing that the mapping \(M(x)\) is upper-semicontinuous at \(x=x_0\) under rather general assumptions. A number of theorems characterize sufficient conditions for lower-semicontinuity of the solution set \(M(x)\).
The results are applied to a problem of minimization of \(f(x,u)\) subject to the constraint \(u\in M(x)\), where \(M(x)\) is the set of solutions to a quasivariational inequality problem described above. The minimization problem is perturbed by allowing for solutions only approximately satisfying the constraints, and satisfying the minimality condition up to a tolerance \(\delta>0\). The authors obtain a number of theorems asserting that, given the tolerance parameter \(\delta\), the perturbed set is upper-semicontinuous with respect to the perturbation of the variational constraint.

MSC:

90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
90C31 Sensitivity, stability, parametric optimization
49J53 Set-valued and variational analysis
Full Text: DOI

References:

[1] Dafermos, S.: Sensitivity analysis in variational inequalities. Math. Oper. Res. 13, 421–434 (1988) · Zbl 0674.49007 · doi:10.1287/moor.13.3.421
[2] Tobin, R.L.: Sensitivity analysis for variational inequalities. J. Optim. Theory Appl. 48, 191–204 (1986) · Zbl 0557.49004
[3] Zhao, J.: The lower semicontinuity of optimal solution sets. J. Math. Anal. Appl. 207, 240–254 (1997) · Zbl 0872.90093 · doi:10.1006/jmaa.1997.5288
[4] Kien, B.T.: On the lower semicontinuity of optimal solution sets. Optimization 54, 123–130 (2005) · Zbl 1141.90551 · doi:10.1080/02331930412331330379
[5] Jianghua, F., Renyou, Z.: Stability analysis for variational inequality in reflexive Banach space. Nonlinear Anal. 69, 2566–2574 (2008) · Zbl 1172.49010 · doi:10.1016/j.na.2007.08.031
[6] Minty, G.J.: On the generalization of a direct method of the calculus of variations. Bull. Am. Math. Soc. 73, 315–321 (1967) · Zbl 0157.19103 · doi:10.1090/S0002-9904-1967-11732-4
[7] Giannessi, F.: On Minty variational principle. In: Giannessi, F., Komlósi, S., Rapcsák, T. (eds.) New Trends in Mathematical Programming. Applied Optimization, vol. 13, pp. 93–99. Kluwer Academic, Massachusetts (1998) · Zbl 0909.90253
[8] Crespi, G., Guerraggio, A., Rocca, M.: Minty variational inequality and optimization: scalar and vector case. In: Eberhard, A., Hadjisavvas, N., Luc, D.T. (eds.) Generalized Convexity. Generalized Monotonicity and Applications. Nonconvex Optimization and its Applications, vol. 77, pp. 193–211. Springer, New York (2005) · Zbl 1071.49003
[9] Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vols. I and II. Springer, New York (2003) · Zbl 1062.90002
[10] John, R.: Variational inequalities and pseudomonotone functions: some characterizations. In: Crouzeix, J.P., Martinez-Legaz, J.E., Volle, M. (eds.) Generalized Convexity, Generalized Monotonicity, pp. 291–301. Kluwer, Dordrecht (1998) · Zbl 0932.49013
[11] Bensoussan, A., Lions, J.L.: Controle impulsionel et inequations quasivariationelles d’evolution. C. R. Acad. Sci., Paris, Sér. A 276, 1333–1338 (1973) · Zbl 0264.49005
[12] Chan, D., Pang, J.S.: The generalized quasivariational inequality problem. Math. Oper. Res. 7, 211–222 (1982) · Zbl 0502.90080 · doi:10.1287/moor.7.2.211
[13] Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities: Applications to Free Boundary Problems. Wiley, New York (1984) · Zbl 0551.49007
[14] Yao, J.C.: The generalized quasivariational inequality problem with applications. J. Math. Anal. Appl. 158, 139–160 (1991) · Zbl 0739.49010 · doi:10.1016/0022-247X(91)90273-3
[15] Kien, B.T., Wong, N.C., Yao, J.C.: On the solution existence of generalized quasivariational inequalities with discontinuous multifunctions. J. Optim. Theory Appl. 135, 515–530 (2007) · Zbl 1137.47049 · doi:10.1007/s10957-007-9239-4
[16] Mosco, U.: Implicit variational problems and quasivariational inequalities. In: Nonlin. Oper. Calc. Var. Proc. Summer School, Bruxelles, 1975. Lecture Notes in Mathematics, vol. 543, pp. 83–156. Springer, Berlin (1976) · Zbl 0338.49016
[17] Gong, L.: Global stability result for the generalized quasivariational inequality problem. J. Optim. Theory Appl. 70, 365–375 (1991) · Zbl 0737.49010 · doi:10.1007/BF00940632
[18] Khanh, P.Q., Luu, L.M.: Lower semicontinuity and upper semicontinuity of the solution sets and approximate solution sets of parametric multivalued quasivariational inequalities. J. Optim. Theory Appl. 133, 329–339 (2007) · Zbl 1146.49006 · doi:10.1007/s10957-007-9190-4
[19] Aubin, J.P., Ekeland, I.: Applied Nonlinear Analysis. Dover, Mineola (2006). Reprint of the 1984 original · Zbl 0641.47066
[20] Muu, L.D.: Stability property of a class of variational inequalities. Math. Operationsforsch. Stat. Ser. Optim. 15, 347–351 (1984) · Zbl 0553.49007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.