×

On the characterization of the solution set for vector equilibrium problem. (English) Zbl 1412.90136

Summary: In this article, we investigate the nonemptiness and compactness of the solution set for vector equilibrium problem defined in finite-dimensional spaces. We show that vector equilibrium problem has nonempty and compact solution set if and only if linearly scalarized equilibrium problem has nonempty and compact solution set provided that \(R_1=\{0\}\) holds. Furthermore, we obtain that vector equilibrium problem has nonempty and compact solution set if and only if linearly scalarized equilibrium problem has nonempty and compact solution set when coercivity condition holds. As applications, we employ the obtained results to derive Levitin-Polyak well-posedness, stability analysis and connectedness of the solution set of the vector equilibrium problem.

MSC:

90C29 Multi-objective and goal programming
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
Full Text: DOI

References:

[1] Anh, L. Q.; Khanh, P. Q., Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems, J. Math. Anal. Appl., 294, 699-711 (2004) · Zbl 1048.49004 · doi:10.1016/j.jmaa.2004.03.014
[2] Anh, L. Q.; Khanh, P. Q.; Van, D. T. M.; Yao, J.-C., Well-posedness for vector quasiequilibria, Taiwanese J. Math., 13, 713-737 (2009) · Zbl 1176.49030 · doi:10.11650/twjm/1500405398
[3] Ansari, Q. H.; Flores-Bazán, F., Recession methods for generalized vector equilibrium problems, J. Math. Anal. Appl., 321, 132-146 (2006) · Zbl 1107.49007 · doi:10.1016/j.jmaa.2005.07.059
[4] Aubin, J.-P.; I. Ekland, Applied Nonlinear Analysis, John Wiley & Sons, New York (1984) · Zbl 0641.47066
[5] Bianchi, M.; Hadjisavvas, N.; S. Schaible, Vector equilibrium problems with generalized monotone bifunctions, J. Optim. Theory Appl., 92, 527-542 (1997) · Zbl 0878.49007 · doi:10.1023/A:1022603406244
[6] Bianchi, M.; R. Pini, Coercivity conditions for equilibrium problems, J. Optim. Theory Appl., 124, 79-92 (2005) · Zbl 1064.49004 · doi:10.1007/s10957-004-6466-9
[7] Bianchi, M.; R. Pini, Sensitivity for parametric vector equilibria, Optimization, 55, 221-230 (2006) · Zbl 1149.90156 · doi:10.1080/02331930600662732
[8] Bianchi, M.; Schaible, S., Generalized monotone bifunctions and equilibrium problems, J. Optim. Theory Appl., 90, 31-43 (1996) · Zbl 0903.49006 · doi:10.1007/BF02192244
[9] Chen, G.-Y.; Huang, X.-X.; Yang, X.-Q., Vector Optimization and Set-Valued and Variational Analysis, Spinger, Berlin (2006)
[10] Fan, J.-H.; Zhong, R.-Y., Stability analysis for variational inequality in reflexive Banach spaces, Nonlinear Anal., 69, 2566-2574 (2008) · Zbl 1172.49010 · doi:10.1016/j.na.2007.08.031
[11] Farajzadeh, A. P.; A. Amini-Harandi, On the generalized vector equilibrium problems, J. Math. Anal. Appl., 344, 999-1004 (2008) · Zbl 1147.49005 · doi:10.1016/j.jmaa.2008.02.065
[12] Flores-Bazán, F., Existence theorems for generalized noncoercive equilibrium problems: The quasiconvex case, SIAM J. Optim., 11, 675-690 (2001) · Zbl 1002.49013 · doi:10.1137/S1052623499364134
[13] F. Flores-Bazán, Existence theory for finite-dimensional pseudomonotone equilibrium problems, Acta Appl. Math., 77, 249-297 (2003) · Zbl 1053.90110 · doi:10.1023/A:1024971128483
[14] Flores-Bazán, F.; F. Flores-Bazán, Vector equilibrium problems under asymptotic analysis, J. Global Optim., 26, 141-166 (2003) · Zbl 1036.90060 · doi:10.1023/A:1023048928834
[15] Giannessi, F.; Maugeri, A.; Pardalos, P. M., Equilibrium Problems: Nonsmooth Optimization and Variational inequality Models, Springer, New York (2006)
[16] X. H. Gong, Efficiency and Henig efficiency for vector equilibrium problems, J. Optim. Theory Appl., 108, 139-154 (2001) · Zbl 1033.90119 · doi:10.1023/A:1026418122905
[17] Han, Y.; N.-J. Huang, The connectedness of the solutions set for generalized vector equilibrium problems, Optimization, 65, 357-367 (2016) · Zbl 1334.49029 · doi:10.1080/02331934.2015.1044899
[18] Hu, R.; Y.-P. Fang, On the nonemptiness and compactness of the solution sets for vector variational inequalities, Optimization, 59, 1107-1116 (2010) · Zbl 1229.90231 · doi:10.1080/02331930903395600
[19] Hu, R.; Fang, Y.-P., Strict feasibility and stable solvability of bifunction variational inequalities, Nonlinear Anal., 75, 331-340 (2012) · Zbl 1227.49015 · doi:10.1016/j.na.2011.08.036
[20] Huang, X. X.; Fang, Y. P.; Yang, X. Q., Characterizing the nonemptiness and compactness of the solution set of a vector variational inequality by scalarization, J. Optim. Theory Appl., 162, 548-558 (2014) · Zbl 1315.90055 · doi:10.1007/s10957-012-0224-1
[21] Konnov, I. V.; O. V. Pinyagina, A descent method with inexact linear search for nonsmooth equilibrium problems, Comp. Math. Math. Phys., 48, 1777-1783 (2008) · Zbl 1199.41177 · doi:10.1134/S0965542508100059
[22] Li, S. J.; M. H. Li, Levitin-Polyak well-posedness of vector equilibrium problems, Math. Methods Oper. Res., 69, 125-140 (2009) · Zbl 1190.90266 · doi:10.1007/s00186-008-0214-0
[23] Liu, Q.-Y.; Long, X.-J.; Huang, N.-J., Connectedness of the sets of weak efficient solutions for generalized vector equilibrium problems, Math. Slovaca, 62, 123-136 (2012) · Zbl 1262.47087 · doi:10.2478/s12175-011-0077-3
[24] Rockafellar, R. T.; Wets, R. J., Variational Analysis, Springer, Berlin (1998) · Zbl 0888.49001
[25] Sadeqi, I.; Alizadeh., C. G., Existence of solutions of generalized vector equilibrium problems in reflexive Banach spaces, Nonlinear Anal., 74, 2226-2234 (2011) · Zbl 1233.90266 · doi:10.1016/j.na.2010.11.027
[26] Sofonea, M.; Xiao, Y.-B., Fully history-dependent quasivariational inequalities in contact mechanics, Appl. Anal., 95, 2464-2484 (2016) · Zbl 1351.49011 · doi:10.1080/00036811.2015.1093623
[27] Wang, G., Existence-stability theorems for strong vector set-valued equilibrium problems in reflexive Banach spaces, J. Inequal. Appl., 2015, 1-14 (2015) · Zbl 1333.49040 · doi:10.1186/s13660-015-0760-y
[28] Wang, G.; Huang, X. X., Levitin-Polyak well-posedness for optimization problems with generalized equilibrium constraints, J. Optim. Theory Appl., 153, 27-41 (2012) · Zbl 1258.90090 · doi:10.1007/s10957-011-9958-4
[29] Wang, G.; Huang, X. X.; Zhang, J., Levitin-Polyak well-posedness in generalized equilibrium problems with functional constraints, Pac. J. Optimi., 6, 441-453 (2010) · Zbl 1188.90276
[30] Wang, Y.-M.; Xiao, Y.-B.; Wang, X.; Cho, Y. J., Equivalence of well-posedness between systems of hemivariational inequalities and inclusion problems, J. Nonlinear. Sci. Appl., 9, 1178-1192 (2016) · Zbl 1328.49008 · doi:10.22436/jnsa.009.03.44
[31] Xiao, Y.-B.; Huang, N.-J.; Cho, Y. J., A class of generalized evolution variational inequalities in Banach space, Appl. Math. Lett., 25, 914-920 (2012) · Zbl 1286.74070 · doi:10.1016/j.aml.2011.10.035
[32] Xiao, Y.-B.; Huang, N.-J.; M.-M. Wong, Well-posedness of hemivariational inequalities and inclusion problems, Taiwanese J. Math., 15, 1261-1276 (2011) · Zbl 1239.49013 · doi:10.11650/twjm/1500406298
[33] Zeng, L. C.; Yao, J. C., Modified combined relaxation method for general monotone equilibrium problems in Hilbert spaces, J. Optim. Theory Appl., 131, 469-483 (2006) · Zbl 1139.90031 · doi:10.1007/s10957-006-9162-0
[34] Zhang, L.; Wu, S.-Y., An algorithm based on the generalized D-gap function for equilibrium problems, J. Comput. Appl. Math., 231, 403-411 (2009) · Zbl 1182.65095 · doi:10.1016/j.cam.2009.03.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.