×

Macroeconomic simulation comparison with a multivariate extension of the Markov information criterion. (English) Zbl 1517.91086

Summary: The paper aims to address the issue of comparing agent-based models (ABMs) with more traditional VAR and DSGE models by developing a multivariate extension of the Markov information criterion (MIC) of S. Barde [“A practical, accurate, information criterion for nth order Markov processes”, Comput. Econ. 50, No. 2, 281–324 (2017)]. The univariate MIC measures the informational distance between a simulation model and some empirical data by mapping the simulated data to a Markov transition matrix, and is proven to provide an unbiased measurement for all models reducible to a Markov process. As a result, the MIC can accurately measure distance using only simulated data, for a wide class of data generating processes. The paper first presents the multivariate extension of the MIC and its validation on VAR and DGSE models before carrying the first direct comparison between a macroeconomic ABM and a DGSE model, namely the benchmark ABM of A. Caiani et al. [J. Econ. Dyn. Control 69, 375–408 (2016; Zbl 1401.91330)] and F. Smets and R. Wouters [“Shocks and frictions in us business cycles: a Bayesian DSGE approach”, Am. Econ. Rev. 97, No. 3, 586–606 (2007)].

MSC:

91B62 Economic growth models
91B51 Dynamic stochastic general equilibrium theory
60J20 Applications of Markov chains and discrete-time Markov processes on general state spaces (social mobility, learning theory, industrial processes, etc.)

Citations:

Zbl 1401.91330

References:

[1] Akaike, H., A new look at the statistical model identification, IEEE Trans. Autom. ContrOL, AC-19, 716-723 (1974) · Zbl 0314.62039
[2] Alfarano, S.; Lux, T.; Wagner, F., Estimation of agent-based models: the case of an asymmetric herding model, Comput. Econ., 26, 1, 19-49 (2005) · Zbl 1161.91364
[3] Ashraf, Q.; Gershman, B.; Howitt, P., Banks, market organization, and macroeconomic performance: an agent-based computational analysis, J. Econ. Behav. Organ., 135, 143-180 (2017)
[4] Baptista, R.; Farmer, J. D.; Hinterschweiger, M.; Low, K.; Tang, D.; Uluc, A., Macroprudential policy in an agent-based model of the uk housing market, Bank of England Staff Working Papers, 619 (2016)
[5] Barde, S., Direct comparison of agent-based models of herding in financial markets, J. Econ. Dyn. Control, 73, 329-353 (2016) · Zbl 1401.91456
[6] Barde, S., A practical, accurate, information criterion for nth order markov processes, Comput. Econ., 50, 2, 281-324 (2017)
[7] Basharin, G. P., On a statistical estimate for the entropy of a sequence of independent random variables, Theory Prob. Appl., 4, 3, 333-336 (1959)
[8] Begleiter, R.; El-Yaniv, R.; Yona, G., On prediction using variable order markov models, J. Artif. Intell. Res., 22, 385-421 (2004) · Zbl 1148.60306
[9] Brock, W. A.; Hommes, C. H., Heterogeneous beliefs and routes to chaos in a simple asset pricing model, J. Econ. Dyn. Control, 22, 8-9, 1235-1274 (1998) · Zbl 0913.90042
[10] Burnham, K. P.; Anderson, D. R., Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2002), Springer Science & Business Media · Zbl 1005.62007
[11] Caiani, A.; Godin, A.; Caverzasi, E.; Gallegati, M.; Kinsella, S.; Stiglitz, J. E., Agent based-stock flow consistent macroeconomics: towards a benchmark model, J. Econ. Dyn. Control, 69, 375-408 (2016) · Zbl 1401.91330
[12] Caiani, A.; Russo, A.; Gallegati, M., Does inequality hamper innovation and growth? An AB-SFC analysis, J. Evolut. Econ., 29, 177-228 (2019)
[13] Carlton, A., On the bias of information estimates, Psychol. Bull., 71, 2, 108-109 (1969)
[14] Cioppa, T. M., Efficient nearly orthogonal and space-filling experimental designs for high-dimensional complex models, Doctoral Dissertation (2002)
[15] Cioppa, T. M.; Lucas, T. W., Efficient nearly orthogonal and space-filling latin hypercubes, Technometrics, 49, 45-55 (2007)
[16] Dawid, H.; Gemkow, S.; Harting, P.; van der Hoog, S.; Neugart, M., Agent-based macroeconomic modeling and policy analysis: the Eurace@Unibi model, (Chen, S.-H.; M., K., The Oxford Handbook of Computational Economics and Finance (2018), Oxford University Press)
[17] Dawid, H.; Harting, P.; van der Hoog, S.; Neugart, M., Macroeconomics with heterogeneous agent models: fostering transparency, reproducibility and replication, J. Evolut. Econ., 29, 1, 467-538 (2019)
[18] Deissenberg, C.; Van Der Hoog, S.; Dawid, H., Eurace: a massively parallel agent-based model of the european economy, Appl. Math. Comput., 204, 2, 541-552 (2008) · Zbl 1151.91674
[19] Del Negro, M.; Hasegawa, R. B.; Schorfheide, F., Dynamic prediction pools: an investigation of financial frictions and forecasting performance, J. Econ., 192, 2, 391-405 (2016) · Zbl 1420.62408
[20] Del Negro, M.; Schorfheide, F., How good is what you’ve got? DGSE-VAR as a toolkit for evaluating DSGE models, Econ. Rev. Fed. Reserve Bank of Atlanta, 91, 21-337 (2006)
[21] Del Negro, M.; Schorfheide, F., Dsge Model-based Forecasting, Handbook of Economic Forecasting, 2, 57-140 (2013), Elsevier
[22] Dosi, G.; Fagiolo, G.; Napoletano, M.; Roventini, A., Income distribution, credit and fiscal policies in an agent-based Keynesian model, J. Econ. Dyn. Control, 37, 8, 1598-1625 (2013) · Zbl 1327.91048
[23] Dosi, G.; Fagiolo, G.; Napoletano, M.; Roventini, A.; Treibich, T., Fiscal and monetary policies in complex evolving economies, J. Econ. Dyn. Control, 52, 166-189 (2015) · Zbl 1402.91438
[24] Dosi, G.; Fagiolo, G.; Roventini, A., Schumpeter meeting Keynes: a policy-friendly model of endogenous growth and business cycles, J. Econ. Dyn. Control, 34, 9, 1748-1767 (2010) · Zbl 1231.91324
[25] Fagiolo, G.; Guerini, M.; Lamperti, F.; Moneta, A.; Roventini, A., Validation of agent-based models in economics and finance, Computer Simulation Validation, 763-787 (2019), Springer
[26] Fagiolo, G.; Moneta, A.; Windrum, P., A critical guide to empirical validation of agent-based models in economics: methodologies, procedures, and open problems, Comput. Econ., 30, 195-226 (2007)
[27] Fagiolo, G.; Roventini, A., Macroeconomic policy in DSGE and agent-based models, Revue de l’OFCE, 5, 124, 67-116 (2012)
[28] Fagiolo, G.; Roventini, A., Macroeconomic policy in DSGE and agent-based models redux: new developments and challenges ahead, J. Artif. Soc. Soc. Simul., 20, 1 (2017)
[29] Franke, R.; Westerhoff, F., Estimation of a structural stochastic volatility model of asset pricing, Comput. Econ., 38, 1, 53-83 (2011) · Zbl 1213.91166
[30] Gilli, M.; Winker, P., A global optimization heuristic for estimating agent based models, Comput. Stat. Data Anal., 42, 3, 299-312 (2003) · Zbl 1429.65123
[31] Grazzini, J.; Richiardi, M., Estimation of ergodic agent-based models by simulated minimum distance, J. Econ. Dyn. Control, 51, 148-165 (2015) · Zbl 1402.91528
[32] Grazzini, J.; Richiardi, M. G.; Tsionas, M., Bayesian estimation of agent-based models, J. Econ. Dyn. Control, 77, 26-47 (2017) · Zbl 1401.91459
[33] Guerini, M.; Moneta, A., A method for agent-based models validation, J. Econ. Dyn. Control, 82, 125-141 (2017) · Zbl 1401.91504
[34] Haldane, A. G.; Turrell, A. E., Drawing on different disciplines: macroeconomic agent-based models, J. Evolut. Econ., 1-28 (2018)
[35] Hansen, P. R.; Lunde, A.; Nason, J. M., The model confidence set, Econometrica, 79, 453-497 (2011) · Zbl 1210.62030
[36] Kimball, M. S., The quantitative analytics of the basic neomonetarist model, J. Money Credit Bank., 27, 4, 1241-1277 (1995)
[37] Krichevsky, R. E.; Trofimov, V. K., The performance of universal encoding, IEEE Trans. Inf. Theory, IT-27, 629-636 (1981)
[38] Kukacka, J.; Barunik, J., Estimation of financial agent-based models with simulated maximum likelihood, J. Econ. Dyn. Control, 85, 21-45 (2017) · Zbl 1401.91460
[39] Kullback, S.; Leibler, R. A., On information and sufficiency, Ann. Math. Stat., 22, 79-86 (1951) · Zbl 0042.38403
[40] Lamperti, F., Empirical validation of simulated models through the GSL-DIV: an illustrative application, J. Econ. Interact. Coord., 13, 1, 143-171 (2018)
[41] Lamperti, F., An information theoretic criterion for empirical validation of simulation models, Econ. Stat., 5, 83-106 (2018)
[42] Lamperti, F.; Roventini, A.; Sani, A., Agent-based model calibration using machine learning surrogates, J. Econ. Dyn. Control, 90, 366-389 (2018) · Zbl 1401.91461
[43] Lindé, J.; Smets, F.; Wouters, R., Challenges for central banks macro models, Handbook of Macroeconomics, 2, 2185-2262 (2016), Elsevier
[44] Lux, T., Estimation of agent-based models using sequential monte carlo methods, J. Econ. Dyn. Control, 91, 391-408 (2018) · Zbl 1401.91462
[45] Marks, R. E., Validation and model selection: three similarity measures compared, Complex. Econ., 2, 1, 41-61 (2013)
[46] Marks, R. E., Validation metrics: a case for pattern-based methods, Computer Simulation Validation, 319-338 (2019), Springer
[47] Panzeri, S.; Treves, A., Analytical estimates of limited sampling biases in different information measures, Netw. Comput. Neural Syst., 7, 87-107 (1996) · Zbl 0898.92013
[48] Popoyan, L.; Napoletano, M.; Roventini, A., Taming macroeconomic instability: monetary and macro-prudential policy interactions in an agent-based model, J. Econ. Behav. Organ., 134, 117-140 (2017)
[49] Raberto, M.; Ozel, B.; Ponta, L.; Teglio, A.; Cincotti, S., From financial instability to green finance: the role of banking and credit market regulation in the eurace model, J. Evolut. Econ., 1-37 (2018)
[50] Rissanen, J., Universal coding, information, prediction and estimation, IEEE Trans. Inf. Theory, IT-30, 629-636 (1984) · Zbl 0574.62003
[51] Rissanen, J., Complexity of strings in the class of markov sources, IEEE Trans. Inf. Theory, IT-32, 526-532 (1986) · Zbl 0621.94005
[52] Roulston, M. S., Estimating the errors on measured entropy and mutual information, Physica D, 125, 285-294 (1999) · Zbl 0935.94013
[53] Salomon, D.; Motta, G., Handbook of Data Compression (2010), Springer Science & Business Media · Zbl 1194.68115
[54] Schasfoort, J.; Godin, A.; Bezemer, D.; Caiani, A.; Kinsella, S., Monetary policy transmission in a macroeconomic agent-based model, Adv. Complex. Syst., 20, 8 (2017) · Zbl 07825193
[55] Shannon, C. E., A mathematical theory of communication, Bell Syst. Tech. J., 27, 379-423 (1948) · Zbl 1154.94303
[56] Smets, F.; Wouters, R., Shocks and frictions in us business cycles: a bayesian DSGE approach, Am. Econ. Rev., 97, 3, 586-606 (2007)
[57] Sugiura, N., Further analysts of the data by Akaike’s information criterion and the finite corrections: further analysts of the data by Akaike’s, Commun. Stat. Theory Methods, 7, 1, 13-26 (1978) · Zbl 0382.62060
[58] Takeuchi, K., The distribution of information statistics and the criterion of goodness of fit of models, Suri-Kagaku (Math. Sci.), 153, 12-18 (1976)
[59] Teglio, A.; Raberto, M.; Cincotti, S., Balance sheet approach to agent-based computational economics: the Eurace project, Combining Soft Computing and Statistical Methods in Data Analysis, 603-610 (2010), Springer
[60] Willems, F. M.J.; Shtarkov, Y. M.; Tjalkens, T. J., The context-tree weighting method: basic properties, IEEE Trans. Inf. Theory, IT-41, 653-664 (1995) · Zbl 0837.94011
[61] Willems, F. M.J.; Tjalkens, T. J.; Ignatenko, T., Context-tree weighting and maximizing: processing betas, Proceedings of the of the Inaugural Workshop of the ITA (Information Theory and its Applications) (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.