×

Physical characteristics of wormhole geometries under different EoS in the context of Rastall gravity. (English) Zbl 1540.83086

Summary: This paper investigates the characteristics of wormhole solutions within the framework of Rastall gravity. First, we derived the shape functions using two different equations of state (EoS). Then we examined the essential characteristics of the shape function for wormholes and the behavior of energy conditions. The present investigation based on the EoS produces wormhole solutions valid for negative values of \(\mu\) or \(\Upsilon\), where \(\mu = \kappa\Upsilon\) is a dimensionless parameter and \(\Upsilon\) denotes a Rastall parameter. Furthermore, the Rastall parameter \(\Upsilon\) plays a vital role in the stability conditions and geometric properties of a wormhole. The volume integral quantifier (\(\mathcal{VIQ}\)) is also discussed, which gives the idea of the amount of exotic matter required near the wormhole throat. The conclusion shows that our solutions derived using both EoS in Rastall gravity are physically feasible.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
Full Text: DOI

References:

[1] Bartolo, N.; Pietroni, M., Scalar tensor gravity and quintessence, Phys. Rev. D, 61, Article 023518 pp., 2000
[2] De Felice, A.; Tsujikawa, S., \( f ( R )\) theories, Living Rev. Rel., 13, 3, 2010 · Zbl 1215.83005
[3] Maartens, R.; Koyama, K., Brane-world gravity, Living Rev. Rel., 13, 5, 2010 · Zbl 1316.83038
[4] Harko, T.; Lobo, F. S.N.; Nojiri, S.; Odintsov, S. D., \( f ( R , T )\) gravity, Phys. Rev. D, 84, Article 024020 pp., 2011
[5] Coule, D. H.; Maeda, K.i., Wormholes with scalar fields, Classical Quantum Gravity, 7, 955, 1990 · Zbl 0696.53058
[6] Rahaman, F.; Kalam, M.; Sarker, M.; Ghosh, A.; Raychaudhuri, B., Wormhole with varying cosmological constant, Gen. Relativity Gravitation, 39, 145, 2007 · Zbl 1129.83340
[7] Gonzalez, J. A.; Guzman, F. S.; Sarbach, O., Instability of wormholes supported by a ghost scalar field. II. Nonlinear evolution, Classical Quantum Gravity, 26, Article 015011 pp., 2009 · Zbl 1157.83009
[8] Ebrahimi, E.; Riazi, N., (n+1)-dimensional Lorentzian wormholes in an expanding cosmological background, Astrophys. Space Sci., 321, 217, 2009 · Zbl 1172.83310
[9] Garcia, N. M.; Lobo, F. S.N., Wormhole geometries supported by a nonminimal curvature-matter coupling, Phys. Rev. D, 82, Article 104018 pp., 2010
[10] Kanti, P.; Kleihaus, B.; Kunz, J., Stable Lorentzian wormholes in dilatonic Einstein-Gauss-Bonnet theory, Phys. Rev. D, 85, Article 044007 pp., 2012
[11] Garcia, N. M.; Lobo, F. S.N.; Visser, M., Generic spherically symmetric dynamic thin-shell traversable wormholes in standard general relativity, Phys. Rev. D, 86, Article 044026 pp., 2012
[12] Mustafa, G.; Errehymy, A.; Maurya, S. K.; Jan, M., New wormhole model with quasi-periodic oscillations exhibiting conformal motion in gravity, Commun. Theor. Phys., 75, 9, Article 095201 pp., 2023 · Zbl 1529.83086
[13] Liu, Y.; Mustafa, G.; Maurya, S. K.; Javed, F., Orbital motion and quasi-periodic oscillations with periastron and Lense-Thirring precession of slowly rotating Einstein-Æther black hole, Eur. Phys. J. C, 83, 7, 584, 2023
[14] Errehymy, A.; Hansraj, S.; Maurya, S. K.; Hansraj, C.; Daoud, M., Spherically symmetric traversable wormholes in the torsion and matter coupling gravity formalism, Phys. Dark Univ., 41, Article 101258 pp., 2023
[15] Mustafa, G.; Maurya, S. K.; Hussain, I., Relativistic wormholes in extended teleparallel gravity with minimal matter coupling, Fortschr. Phys., 71, 4-5, Article 2200119 pp., 2023 · Zbl 07769836
[16] Mustafa, G.; Maurya, S. K.; Ray, S., Relativistic wormhole surrounded by dark matter halos in symmetric teleparallel gravity, Fortschr. Phys., 71, 6-7, Article 2200129 pp., 2023 · Zbl 07769851
[17] Rastall, P., Generalization of the Einstein theory, Phys. Rev. D, 6, 3357, 1972 · Zbl 0959.83525
[18] Moradpour, H.; Heydarzade, Y.; Darabi, F.; Salako, I. G., A generalization to the Rastall theory and cosmic eras, Eur. Phys. J. C, 77, 4, 259, 2017
[19] Visser, M., Rastall gravity is equivalent to Einstein gravity, Phys. Lett. B, 782, 83, 2018 · Zbl 1404.83009
[20] Darabi, F.; Moradpour, H.; Licata, I.; Heydarzade, Y.; Corda, C., Einstein and Rastall theories of gravitation in comparison, Eur. Phys. J. C, 78, 25, 2018
[21] Nashed, G. G.L.; El Hanafy, W., Non-trivial class of anisotropic compact stellar model in Rastall gravity, Eur. Phys. J. C, 82, 8, 679, 2022
[22] Sakti, M. F.A. R.; Suroso, A.; Sulaksono, A.; Zen, F. P., Rotating black holes and exotic compact objects in the Kerr/CFT correspondence within Rastall gravity, Phys. Dark Univ., 35, Article 100974 pp., 2022
[23] Meng, L.; Liu, D. J., Tidal Love numbers of neutron stars in Rastall gravity, Astrophys. Space Sci., 366, 11, 105, 2021
[24] Cruz, M.; Lepe, S.; Morales-Navarrete, G., A thermodynamics revision of Rastall gravity, Classical Quantum Gravity, 36, 22, Article 225007 pp., 2019 · Zbl 1478.83241
[25] Kavya, N. S.; Venkatesha, V.; Mustafa, G.; Sahoo, P. K.; Rashmi, S. V.D., Static traversable wormhole solutions in \(f ( R , \mathcal{L} m )\) gravity, Chinese J. Phys., 84, 1, 2023 · Zbl 1539.83083
[26] Fabris, J. C.; Piattella, O. F.; Rodrigues, D. C., On Rastall gravity formulation as a \(f ( R , \mathcal{L}_m )\) and a \(f ( R , T )\) theory, Eur. Phys. J. Plus, 138, 3, 232, 2023
[27] Fabris, J. C.; Daouda, M. H.; Piattella, O. F., Note on the evolution of the gravitational potential in Rastall scalar field theories, Phys. Lett. B, 711, 232, 2012
[28] Batista, C. E.M.; Daouda, M. H.; Fabris, J. C.; Piattella, O. F.; Rodrigues, D. C., Rastall cosmology and the \(\Lambda\) CDM model, Phys. Rev. D, 85, Article 084008 pp., 2012
[29] Batista, C. E.M.; Fabris, J. C.; Piattella, O. F.; Velasquez-Toribio, A. M., Observational constraints on Rastall’s cosmology, Eur. Phys. J. C, 73, 2425, 2013
[30] Bezerra de Mello, E. R.; Fabris, J. C.; Hartmann, B., Abelian-Higgs strings in Rastall gravity, Classical Quantum Gravity, 32, 8, Article 085009 pp., 2015 · Zbl 1328.83174
[31] Pawłowski, T., Observations on interfacing loop quantum gravity with cosmology, Phys. Rev. D, 92, 12, Article 124020 pp., 2015
[32] Moradpour, H.; Salako, I. G., Thermodynamic analysis of the static spherically symmetric field equations in Rastall theory, Adv. High Energy Phys., 2016, Article 3492796 pp., 2016 · Zbl 1366.83083
[33] Moradpour, H., Thermodynamics of flat FLRW universe in Rastall theory, Phys. Lett. B, 757, 187, 2016 · Zbl 1360.83056
[34] Wheeler, J. A., On the nature of quantum geometrodynamics, Ann. Physics, 2, 604-614, 1957 · Zbl 0078.19201
[35] Misner, C. W., Wormhole initial conditions, Phys. Rev., 118, 1110, 1960 · Zbl 0090.44205
[36] Morris, M. S.; Thorne, K. S., Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity, Amer. J. Phys., 56, 395, 1988 · Zbl 0957.83529
[37] Morris, M. S.; Thorne, K. S.; Yurtsever, U., Wormholes, time machines, and the weak energy condition, Phys. Rev. Lett., 61, 1446, 1988
[38] Visser, M., Lorentzian wormholes: From Einstein to Hawking (AIP, Woodbury, 1995), Lorentzian Wormholes: From Einstein to Hawking, 1995, AIP: AIP Woodbury
[39] Hochberg, D.; Visser, M., Geometric structure of the generic static traversable wormhole throat, Phys. Rev. D, 56, 4745, 1997
[40] Hochberg, D.; Visser, M., The null energy condition in dynamic wormholes, Phys. Rev. Lett., 81, 746, 1998 · Zbl 0949.83052
[41] Hochberg, D.; Visser, M., Dynamic wormholes, anti-trapped surfaces, and energy conditions, Phys. Rev. D, 58, Article 044021 pp., 1998
[42] Visser, M., Traversable wormholes: Some simple examples, Phys. Rev. D, 39, 3182, 1989
[43] Visser, M., Traversable wormholes from surgically modified Schwarzschild space-times, Nuclear Phys. B, 328, 203, 1989
[44] Zaslavskii, O. B., Traversable wormholes: Minimum violation of null energy condition revisited, Phys. Rev. D, 76, Article 044017 pp., 2007
[45] Lobo, F. S.N., Wormhole geometries in modified gravity, AIP Conf. Proc., 1458, 1, 447, 2012
[46] Harko, T.; Lobo, F. S.N.; Mak, M. K.; Sushkov, S. V., Modified-gravity wormholes without exotic matter, Phys. Rev. D, 87, 6, Article 067504 pp., 2013
[47] Kar, S., Evolving wormholes and the weak energy condition, Phys. Rev. D, 49, 862, 1994
[48] Sushkov, S. V.; Zhang, Y. Z., Scalar wormholes in cosmological setting and their instability, Phys. Rev. D, 77, Article 024042 pp., 2008
[49] Kuhfittig, P. K.F., Static and dynamic traversable wormhole geometries satisfying the Ford-Roman constraints, Phys. Rev. D, 66, Article 024015 pp., 2002
[50] Anchordoqui, L. A.; Torres, D. F.; Trobo, M. L.; Perez Bergliaffa, S. E., Evolving wormhole geometries, Phys. Rev. D, 57, 829, 1998
[51] La Camera, M., On thin-shell wormholes evolving in flat FRW spacetimes, Modern Phys. Lett. A, 26, 857, 2011 · Zbl 1274.83026
[52] Arellano, A. V.B.; Lobo, F. S.N., Evolving wormhole geometries within nonlinear electrodynamics, Classical Quantum Gravity, 23, 5811, 2006 · Zbl 1133.83309
[53] Esfahani, B. N., The null energy condition in wormholes with cosmological constant, Gen. Relativity Gravitation, 37, 271, 2005 · Zbl 1077.83053
[54] Cataldo, M.; del Campo, S., Two-fluid evolving Lorentzian wormholes, Phys. Rev. D, 85, Article 104010 pp., 2012
[55] Mustafa, G.; Shahzad, M. R.; Abbas, G.; Xia, T., Stable wormholes solutions in the background of Rastall theory, Modern Phys. Lett. A, 35, 07, Article 2050035 pp., 2019 · Zbl 1434.83105
[56] Mustafa, G.; Abbas, G.; Shahzad, M. R.; Tie-Cheng, X., Stable wormhole existence under noncommutative distributed background in Rastall theory, Can. J. Phys., 98, 8, 752, 2020
[57] Mustafa, G.; Xia, Tie-Cheng, Wormhole models with exotic matter in Rastall gravity, Int. J. Geom. Methods Mod. Phys., 17, 10, Article 2050146 pp., 2020 · Zbl 07813578
[58] Halder, S.; Bhattacharya, S.; Chakraborty, S., Wormhole solutions in Rastall gravity theory, Modern Phys. Lett. A, 34, 12, Article 1950095 pp., 2019 · Zbl 1411.83104
[59] Capozziello, S.; Harko, T.; Koivisto, T. S.; Lobo, F. S.N.; Olmo, G. J., Wormholes supported by hybrid metric-Palatini gravity, Phys. Rev. D, 86, Article 127504 pp., 2012
[60] Sharif, M.; Rani, S., Wormhole solutions in \(f ( T )\) gravity with noncommutative geometry, Phys. Rev. D, 88, 12, Article 123501 pp., 2013
[61] Boehmer, C. G.; Harko, T.; Lobo, F. S.N., Conformally symmetric traversable wormholes, Phys. Rev. D, 76, Article 084014 pp., 2007
[62] Rahaman, F.; Kalam, M.; Sarker, M.; Gayen, K., A theoretical construction of wormhole supported by phantom energy, Phys. Lett. B, 633, 161, 2006 · Zbl 1247.83295
[63] Rahaman, F.; Kuhfittig, P. K.F.; Ray, S.; Islam, N., Possible existence of wormholes in the galactic halo region, Eur. Phys. J. C, 74, 2750, 2014
[64] Visser, M.; Kar, S.; Dadhich, N., Traversable wormholes with arbitrarily small energy condition violations, Phys. Rev. Lett., 90, Article 201102 pp., 2003 · Zbl 1267.83134
[65] Jusufi, K.; Channuie, P.; Jamil, M., Traversable wormholes supported by GUP corrected casimir energy, Eur. Phys. J. C, 80, 2, 127, 2020
[66] Sokoliuk, O.; Mandal, S.; Sahoo, P. K.; Baransky, A., Generalised Ellis-Bronnikov wormholes in \(f ( R )\) gravity, Eur. Phys. J. C, 82, 4, 280, 2022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.