×

Thermal teleportation of accelerated information via XXX two-qubit Heisenberg chain in the presence of an asymmetric external magnetic field with long-range interaction. (English) Zbl 07847902

Summary: In this investigation, thermal teleportation of an accelerated entangled state by an XXX two-qubit Heisenberg chain as a quantum channel is studied. We suppose the quantum channel in the presence of a non-uniform external magnetic field and with a long-range interaction. In order to investigate the quality of the quantum teleportation, trace distance of the input and output states is studied. It is observed that for small values of the magnetic field and spin distance, even though the entanglement of the input and output states is a decreasing function of the acceleration parameter, but the trace distance of these states remains zero independent of the acceleration parameter. Moreover, at a constant temperature, for both inertial and non-inertial observers, if the external magnetic field and spin distance are less than a critical value, they have no effect on the entanglement of the output state, but if they reach a critical value, the entanglement teleportation becomes zero and causes the loss of teleportation. In addition, these critical values become smaller with the increase of the temperature. Furthermore, the asymmetry of the magnetic field can cause the appearance of the entanglement in the output state of a ferromagnetic channel. Also, if the distance between the spins is small, increasing temperature has no effect on the entanglement and the teleportation quality.

MSC:

81P48 LOCC, teleportation, dense coding, remote state operations, distillation
81P40 Quantum coherence, entanglement, quantum correlations
Full Text: DOI

References:

[1] Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wotters, W.K.: Phys. Rev. Lett. 70, 1895-1899 (1993) · Zbl 1051.81505
[2] Bouwmeester, D.; Pan, J.; Mattle, K.; Eibl, M.; Weinfurter, H.; Zeilinger, A., Nature, 390, 575-579, (1998) · Zbl 1369.81006 · doi:10.1038/37539
[3] Marcikic, I.; Riedmatten, H.; Tittel, W.; Zbinden, H.; Gisin, N., Nature, 421, 509-513, (2003) · doi:10.1038/nature01376
[4] Barrett, MD; Chiaverini, J.; Schaetz, T.; Britton, J.; Itano, WM; Jost, JD, Nature., 429, 737-739, (2004) · doi:10.1038/nature02608
[5] Zhou, Y.; Zhang, G-F, Eur. Phys. J. D, 47, 227-231, (2008) · doi:10.1140/epjd/e2008-00023-5
[6] Riebe, M.; Chwalla, M.; Benhelm, J.; Haffner, H.; Hansel, W.; Roos, CF; Blatt, R., New J. Phys., 9, 211, (2007) · doi:10.1088/1367-2630/9/7/211
[7] Zhang, GF, Phys. Rev. A, 75, 034304, (2007) · doi:10.1103/PhysRevA.75.034304
[8] Guo, JL; Song, HS, Phys. Scr., 78, 2055, (2008)
[9] Xu, X.; Wang, X., Int. J. Theor. Phys., 55, 3551-3554, (2016) · Zbl 1361.81034 · doi:10.1007/s10773-016-2983-1
[10] Bose, S., Contemp. Phys., 48, 13-30, (2007) · doi:10.1080/00107510701342313
[11] Fortes, R.; Regolin, G., Phys. Rev. A, 96, 022315, (2017) · doi:10.1103/PhysRevA.96.022315
[12] Mirmasoudi, F., Ahadpour, S.: J. Mod. Opt. 65, 730-736 (2018)
[13] Naji, A.; Hamzehofi, R.; Afshar, D., Iran. J. Phys. Res., 19, 656-656, (2019)
[14] Abd-Rabboul, MY; Khalil, EM; Abdel-Khalek, S.; Al-Barakaty, A.; Abu-Zinadah, H., IEEE., 9, 51325-51331, (2021)
[15] Omri, M.; Abd-Rabbou, MY; Khalil, EM; Abdel-Khalek, S., Alex. Eng. J., 61, 8335-8342, (2022) · doi:10.1016/j.aej.2022.01.051
[16] Khalil, EM; Abd-Rabbou, MY, Optik., 267, 169703, (2022) · doi:10.1016/j.ijleo.2022.169703
[17] Hwang, M.R., Park, D., Jung, E.: Phys. Rev. A. 83, 012111 (2011)
[18] Fuentes-Schuller, I.; Mann, RB, Phys. Rev. Lett., 95, 120404, (2005) · doi:10.1103/PhysRevLett.95.120404
[19] Alsing, PM; Fuentes-Schuller, I.; Mann, RB; Tessier, TE, Phys. Rev. A, 74, 032326, (2006) · doi:10.1103/PhysRevA.74.032326
[20] Mann, RB; Fuentes, I., Phys. Essays., 1, 226, (2008)
[21] Wang, J.; Jing, J., Phys. Rev. A, 83, 022314, (2011) · doi:10.1103/PhysRevA.83.022314
[22] Dehnaviab, HM; Mirza, B.; Mohammadzadeh, H.; Rahimi, R., Ann. Phys., 326, 1320-1333, (2011) · Zbl 1221.81044 · doi:10.1016/j.aop.2011.02.001
[23] Shamirzaie, M.; Esfahani, BN; Soltani, M., Int. J. Theor. Phys., 51, 787-804, (2012) · Zbl 1243.81045 · doi:10.1007/s10773-011-0958-9
[24] Zhang, W.; Deng, J.; Jing, J., J. Quantum Inf. Sci., 2, 23-27, (2012) · doi:10.4236/jqis.2012.22005
[25] Dai, Y., Shen, Z., Shi, Y.: J. High Energy Phys. 2015 (2015)
[26] Sun, WY; Wang, D.; Yang, J.; Ye, L., Quantum Inf. Process, 16, 90, (2017) · Zbl 1373.81085 · doi:10.1007/s11128-017-1540-z
[27] Esmaeilifar, L.; Harsij, Z.; Mirza, B., Int. J. Theor. Phys., 58, 4152-4169, (2019) · Zbl 1447.81034 · doi:10.1007/s10773-019-04281-7
[28] Torres-Arenasa, AJ; Dong, Q.; Sun, GH; Qiang, WC; Dong, SH, Phys. Lett. B, 789, 93-105, (2019) · doi:10.1016/j.physletb.2018.12.010
[29] Kim, KL; Pak, MC; Kim, TH, Eur. Phys. J. D, 74, 124, (2020) · doi:10.1140/epjd/e2020-10098-3
[30] Unruh, WG, Phys. Rev. D., 14, 870-892, (1976) · doi:10.1103/PhysRevD.14.870
[31] Davies, PCW, J. Phys. A Math. Gen., 8, 609-616, (1975) · doi:10.1088/0305-4470/8/4/022
[32] Metwally, N.: J. Opt. Soc. Am. B. 30, 233-237 (2013)
[33] Xiang, M., Jing, J.: J. Quantum Inf. Sci. 2, 103-111 (2012)
[34] Chen, X., Chan, K.W.C.: Phys. Rev. A. 99, 022334 (2019)
[35] Jin, Y., Adv. Theor. Simul., 2, 1900002, (2019) · doi:10.1002/adts.201900002
[36] Mirzaei, S.; Akbarieh, AR, Int. J. Theor. Phys., 59, 3583-3592, (2020) · Zbl 1462.81052 · doi:10.1007/s10773-020-04618-7
[37] Alsing, PM; McMahon, D.; Milburn, GJ, J. Opt. B: Quant. Semiclass. Opt., 6, 834-845, (2004) · doi:10.1088/1464-4266/6/8/033
[38] Bonechi, F.; Celeghini, E.; Giachetti, R.; Sorace, E.; Tarlini, M., J. Phys. A Math. Gen., 25, 939-943, (1992) · Zbl 0764.17022 · doi:10.1088/0305-4470/25/15/007
[39] Niccoli, G.; Pei, H.; Terras, V., SciPost. Phys., 10, 006, (2021) · doi:10.21468/SciPostPhys.10.1.006
[40] Zhou, Y.; Zhang, G-F, Eur. Phys. J. D, 47, 227-231, (2008) · doi:10.1140/epjd/e2008-00023-5
[41] Han, SD; Tufekci, T.; Spiller, TP; Aydiner, E., Int. J. Theor. Phys., 56, 1474-1483, (2017) · Zbl 1366.81060 · doi:10.1007/s10773-017-3287-9
[42] Qiang, WC; Sun, GH; Dong, Q.; Dong, SH, Phys. Rev. A, 98, 022320, (2018) · doi:10.1103/PhysRevA.98.022320
[43] Peres, A., Phys. Rev. Lett., 77, 1413-1415, (1996) · Zbl 0947.81003 · doi:10.1103/PhysRevLett.77.1413
[44] Wootters, WK, Phys. Rev. Lett., 80, 2245-2248, (1997) · Zbl 1368.81047 · doi:10.1103/PhysRevLett.80.2245
[45] Kamta, GL; Starace, AF, Phys. Rev. Lett., 88, 107901, (2002) · doi:10.1103/PhysRevLett.88.107901
[46] Barnett, SM, Quantum Information, (2009), Oxford University Press · Zbl 1170.81300 · doi:10.1093/oso/9780198527626.001.0001
[47] Mo, C.; Zhang, GF, Results Phys., 21, 103759, (2021) · doi:10.1016/j.rinp.2020.103759
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.