×

Cameron-Liebler sets in permutation groups. (English) Zbl 07921889

Summary: Consider a group \(G\) acting on a set \(\Omega\). A \((G, \Omega)\)-Cameron-Liebler set is a subset of \(G\), whose indicator function is a linear combination of the indicator functions of the cosets of the point stabilizers. We investigate Cameron-Liebler sets in permutation groups, with a focus on constructions of Cameron-Liebler sets for \(2\)-transitive groups.

MSC:

20B05 General theory for finite permutation groups

References:

[1] Ahmadi, Bahman; Meagher, Karen, The Erdős-Ko-Rado property for some permutation groups, Australas. J. Combin., 61, 23-41, 2015 · Zbl 1309.05175
[2] Ahmadi, Bahman; Meagher, Karen, The Erdős-Ko-Rado property for some 2-transitive groups, Ann. Comb., 19, 4, 621-640, 2015 · Zbl 1326.05068 · doi:10.1007/s00026-015-0285-6
[3] Bardestani, Mohammad; Mallahi-Karai, Keivan, On the Erdős-Ko-Rado property for finite groups, J. Algebraic Combin., 42, 1, 111-128, 2015 · Zbl 1326.05160 · doi:10.1007/s10801-014-0575-9
[4] Block, Richard E., On the orbits of collineation groups, Math. Z., 96, 33-49, 1967 · Zbl 0163.42304 · doi:10.1007/BF01111448
[5] Burnside, W., Theory of groups of finite order, xxiv+512 p. pp., 1955, Dover Publications, Inc., New York · Zbl 0064.25105
[6] Cameron, P. J.; Liebler, R. A., Tactical decompositions and orbits of projective groups, Linear Algebra Appl., 46, 91-102, 1982 · Zbl 0504.05015 · doi:10.1016/0024-3795(82)90029-5
[7] Cameron, Peter J.; Ku, C. Y., Intersecting families of permutations, European J. Combin., 24, 7, 881-890, 2003 · Zbl 1026.05001 · doi:10.1016/S0195-6698(03)00078-7
[8] Cossidente, Antonio; Pavese, Francesco, Cameron-Liebler line classes of \({\rm PG}(3,q)\) admitting \({\rm PGL}(2,q)\), J. Combin. Theory Ser. A, 167, 104-120, 2019 · Zbl 1431.51005 · doi:10.1016/j.jcta.2019.04.004
[9] De Boeck, M.; D’haeseleer, J., Equivalent definitions for (degree one) Cameron-Liebler classes of generators in finite classical polar spaces, Discrete Math., 343, 1, 13 p. pp., 2020 · Zbl 1443.51002 · doi:10.1016/j.disc.2019.111642
[10] De Boeck, M.; Rodgers, M.; Storme, L.; Švob, A., Cameron-Liebler sets of generators in finite classical polar spaces, J. Combin. Theory Ser. A, 167, 340-388, 2019 · Zbl 1437.51009 · doi:10.1016/j.jcta.2019.05.005
[11] De Boeck, M.; Storme, L.; Švob, A., The Cameron-Liebler problem for sets, Discrete Math., 339, 2, 470-474, 2016 · Zbl 1327.05326 · doi:10.1016/j.disc.2015.09.024
[12] De Bruyn, Bart; Suzuki, Hiroshi, Intriguing sets of vertices of regular graphs, Graphs Combin., 26, 5, 629-646, 2010 · Zbl 1230.05297 · doi:10.1007/s00373-010-0924-y
[13] D’haeseleer, J.; Mannaert, J.; Storme, L.; Švob, A., Cameron-Liebler line classes in AG \((3,q)\), Finite Fields Appl., 67, 17 p. pp., 2020 · Zbl 1459.51002 · doi:10.1016/j.ffa.2020.101706
[14] Dixon, John D.; Mortimer, Brian, Permutation groups, 163, xii+346 p. pp., 1996, Springer Science & Business Media · Zbl 0951.20001 · doi:10.1007/978-1-4612-0731-3
[15] Eberhard, Sean, Sharply transitive sets in \({\rm PGL}_2(K)\), Adv. Geom., 21, 4, 611-612, 2021 · Zbl 1476.51005 · doi:10.1515/advgeom-2021-0029
[16] Ellis, David, Setwise intersecting families of permutations, J. Combin. Theory Ser. A, 119, 4, 825-849, 2012 · Zbl 1237.05210 · doi:10.1016/j.jcta.2011.12.003
[17] Ellis, David; Friedgut, Ehud; Pilpel, Haran, Intersecting families of permutations, J. Amer. Math. Soc., 24, 3, 649-682, 2011 · Zbl 1285.05171 · doi:10.1090/S0894-0347-2011-00690-5
[18] Ernst, Alena; Schmidt, Kai-Uwe, Intersection theorems for finite general linear groups, Math. Proc. Cambridge Philos. Soc., 175, 1, 129-160, 2023 · Zbl 1516.05217 · doi:10.1017/S0305004123000075
[19] Filmus, Y.; Ihringer, F., Boolean degree 1 functions on some classical association schemes, J. Combin. Theory Ser. A, 162, 241-270, 2019 · Zbl 1401.05317 · doi:10.1016/j.jcta.2018.11.006
[20] Gavrilyuk, A. L.; Metsch, K., A modular equality for Cameron-Liebler line classes, J. Combin. Theory Ser. A, 127, 224-242, 2014 · Zbl 1302.51008 · doi:10.1016/j.jcta.2014.06.004
[21] Godsil, Christopher; Meagher, Karen, Erdős-Ko-Rado Theorems: Algebraic Approaches, 149, 2016, Cambridge University Press · Zbl 1343.05002
[22] Hujdurović, Ademir; Kutnar, Klavdija; Marušič, Dragan; Miklavič, Štefko, Intersection density of transitive groups of certain degrees, Algebr. Comb., 5, 2, 289-297, 2022 · Zbl 07524643 · doi:10.5802/alco.209
[23] Huppert, Bertram, Endliche Gruppen. I, 134, xii+793 p. pp., 1967, Springer-Verlag, Berlin-New York · Zbl 0217.07201
[24] Isaacs, I. M.; Navarro, Gabriel, Character sums and double cosets, J. Algebra, 320, 10, 3749-3764, 2008 · Zbl 1189.20012 · doi:10.1016/j.jalgebra.2008.08.010
[25] Isaacs, I. Martin, Character theory of finite groups, No. 69, xii+303 p. pp., 1976, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London · Zbl 0337.20005
[26] King, Oliver H., Surveys in combinatorics 2005, 327, The subgroup structure of finite classical groups in terms of geometric configurations, 29-56, 2005, Cambridge Univ. Press, Cambridge · Zbl 1107.20035 · doi:10.1017/CBO9780511734885.003
[27] Ku, Cheng Yeaw; Wong, Tony W. H., Intersecting families in the alternating group and direct product of symmetric groups, Electron. J. Combin., 14, 1, 15 p. pp., 2007 · Zbl 1111.05093 · doi:10.37236/943
[28] Li, Cai-Heng; Pantangi, Venkata Raghu Tej, On the EKR-module property, Algebr. Comb., 7, 2, 577-596, 2024 · Zbl 1536.05445
[29] Li, Cai Heng; Song, Shu Jiao; Pantangi, Venkata Raghu Tej, Erdős-Ko-Rado problems for permutation groups, 2020
[30] Long, Ling; Plaza, Rafael; Sin, Peter; Xiang, Qing, Characterization of intersecting families of maximum size in \(PSL(2, q)\), J. Combin. Theory Ser. A, 157, 461-499, 2018 · Zbl 1385.05070 · doi:10.1016/j.jcta.2018.03.006
[31] Meagher, Karen, An Erdős-Ko-Rado theorem for the group \({P}{S}{U}(3,q)\), Des. Codes Cryptogr., 87, 4, 717-744, 2019 · Zbl 1407.05232 · doi:10.1007/s10623-018-0537-7
[32] Meagher, Karen; Razafimahatratra, Andriaherimanana Sarobidy, Some Erdős-Ko-Rado results for linear and affine groups of degree two, Art Discrete Appl. Math., 6, 1, 30 p. pp., 2023 · Zbl 1502.05091 · doi:10.26493/2590-9770.1494.1e4
[33] Meagher, Karen; Sin, Peter, All 2-transitive groups have the EKR-module property, J. Combin. Theory Ser. A, 177, 21 p. pp., 2021 · Zbl 1448.05228 · doi:10.1016/j.jcta.2020.105322
[34] Meagher, Karen; Spiga, Pablo, An Erdős-Ko-Rado theorem for the derangement graph of PGL(2, q) acting on the projective line, J. Combin. Theory Ser. A, 118, 2, 532-544, 2011 · Zbl 1227.05163 · doi:10.1016/j.jcta.2010.11.003
[35] Meagher, Karen; Spiga, Pablo; Tiep, Pham Huu, An Erdős-Ko-Rado theorem for finite 2-transitive groups, European J. Combin., 55, 100-118, 2016 · Zbl 1333.05306 · doi:10.1016/j.ejc.2016.02.005
[36] Metsch, K., An improved bound on the existence of Cameron-Liebler line classes, J. Combin. Theory Ser. A, 121, 89-93, 2014 · Zbl 1284.51008 · doi:10.1016/j.jcta.2013.09.004
[37] Mogilnykh, Ivan, Completely regular codes in Johnson and Grassmann graphs with small covering radii, Electron. J. Combin., 29, 2, 15 p. pp., 2022 · Zbl 1492.05022 · doi:10.37236/10083
[38] Palmarin, Daniel Michael, Cameron-Liebler Sets for 2-Transitive Groups, 2020
[39] Piatetski-Shapiro, Ilya, Complex representations of \({\rm GL}(2,\,K)\) for finite fields \(K\), 16, vii+71 p. pp., 1983, American Mathematical Society, Providence, RI · Zbl 0513.20026
[40] Sagan, Bruce E., The symmetric group: Representations, combinatorial algorithms, and symmetric functions, xviii+197 p. pp., 1991, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA · Zbl 0823.05061
[41] Spiga, Pablo, The Erdős-Ko-Rado theorem for the derangement graph of the projective general linear group acting on the projective space, J. Combin. Theory Ser. A, 166, 59-90, 2019 · Zbl 1416.05276 · doi:10.1016/j.jcta.2019.02.015
[42] Wang, Jun; Zhang, Sophia J., An Erdős-Ko-Rado-type theorem in Coxeter groups, European J. Combin., 29, 5, 1112-1115, 2008 · Zbl 1140.20001 · doi:10.1016/j.ejc.2007.07.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.