×

Linearly convergent nonoverlapping domain decomposition methods for quasilinear parabolic equations. (English) Zbl 07930658

Summary: We prove linear convergence for a new family of modified Dirichlet-Neumann methods applied to quasilinear parabolic equations, as well as the convergence of the Robin-Robin method. Such nonoverlapping domain decomposition methods are commonly employed for the parallelization of partial differential equation solvers. Convergence has been extensively studied for elliptic equations, but in the case of parabolic equations there are hardly any convergence results that are not relying on strong regularity assumptions. Hence, we construct a new framework for analyzing domain decomposition methods applied to quasilinear parabolic problems, based on fractional time derivatives and time-dependent Steklov-Poincaré operators. The convergence analysis is conducted without assuming restrictive regularity assumptions on the solutions or the numerical iterates. We also prove that these continuous convergence results extend to the discrete case obtained when combining domain decompositions with space-time finite elements.

MSC:

65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
65J08 Numerical solutions to abstract evolution equations
35K20 Initial-boundary value problems for second-order parabolic equations

References:

[1] Agoshkov, Valery I., Lebedev, Vyacheslav I.: Variational algorithms of the domain decomposition method [translation of Preprint 54, Akad. Nauk SSSR, Otdel. Vychisl. Mat., Moscow, 1983]. volume 5, pages 27-46. (1990). Soviet Journal of Numerical Analysis and Mathematical Modelling · Zbl 0816.65092
[2] Ahmed, Elyes; Japhet, Caroline; Kern, Michel, Space-time domain decomposition for two-phase flow between different rock types, Comput. Methods Appl. Mech. Eng., 371, 2020 · Zbl 1506.76162 · doi:10.1016/j.cma.2020.113294
[3] Aubin, Jean-Pierre: Applied functional analysis. Pure and Applied Mathematics (New York). Wiley-Interscience, New York, second edition, (2000) · Zbl 0946.46001
[4] Caetano, Filipa; Gander, Martin J.; Halpern, Laurence; Szeftel, Jérémie, Schwarz waveform relaxation algorithms for semilinear reaction-diffusion equations, Netw. Heterog. Media, 5, 3, 487-505, 2010 · Zbl 1262.35009 · doi:10.3934/nhm.2010.5.487
[5] Costabel, Martin, Boundary integral operators for the heat equation, Integral Equations Operator Theory, 13, 4, 498-552, 1990 · Zbl 0715.35032 · doi:10.1007/BF01210400
[6] Dahlgren, M.: A finite element method for parabolic equations. In Progress in industrial mathematics at ECMI 2002, volume 5 of Math. Ind., pages 253-258. Springer, Berlin, (2004) · Zbl 1087.65592
[7] Engström, Emil; Hansen, Eskil, Convergence analysis of the nonoverlapping Robin-Robin method for nonlinear elliptic equations, SIAM J. Numer. Anal., 60, 2, 585-605, 2022 · Zbl 1493.65259 · doi:10.1137/21M1414942
[8] Fontes, M.: Parabolic equations with low regularity. Lund University, Thesis (1996)
[9] Fontes, Magnus, Initial-boundary value problems for parabolic equations, Ann. Acad. Sci. Fenn. Math., 34, 2, 583-605, 2009 · Zbl 1198.35137
[10] Gander, Martin J., Optimized Schwarz methods, SIAM J. Numer. Anal., 44, 2, 699-731, 2006 · Zbl 1117.65165 · doi:10.1137/S0036142903425409
[11] Gander, Martin J.: 50 years of time parallel time integration. In Multiple shooting and time domain decomposition methods, volume 9 of Contrib. Math. Comput. Sci., pages 69-113. Springer, Cham, (2015) · Zbl 1337.65127
[12] Gander, Martin J.; Halpern, Laurence, Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems, SIAM J. Numer. Anal., 45, 2, 666-697, 2007 · Zbl 1140.65063 · doi:10.1137/050642137
[13] Gander, Martin J.; Kwok, Felix; Mandal, Bankim C., Dirichlet-Neumann and Neumann-Neumann waveform relaxation algorithms for parabolic problems, Electron. Trans. Numer. Anal., 45, 424-456, 2016 · Zbl 1355.65128
[14] Gander, Martin J.; Kwok, Felix; Mandal, Bankim C., Dirichlet-Neumann waveform relaxation methods for parabolic and hyperbolic problems in multiple subdomains, BIT, 61, 1, 173-207, 2021 · Zbl 1466.65111 · doi:10.1007/s10543-020-00823-2
[15] Gander, Martin J.; Lunowa, Stephan B.; Rohde, Christian, Non-overlapping Schwarz waveform-relaxation for nonlinear advection-diffusion equations, SIAM J. Sci. Comput., 45, 1, A49-A73, 2023 · Zbl 1516.65081 · doi:10.1137/21M1415005
[16] Giladi, Eldar; Keller, Herbert B., Space-time domain decomposition for parabolic problems, Numer. Math., 93, 2, 279-313, 2002 · Zbl 1019.65076 · doi:10.1007/s002110100345
[17] Halpern, Laurence; Japhet, Caroline; Szeftel, Jérémie, Optimized Schwarz waveform relaxation and discontinuous Galerkin time stepping for heterogeneous problems, SIAM J. Numer. Anal., 50, 5, 2588-2611, 2012 · Zbl 1262.65127 · doi:10.1137/120865033
[18] Hoang, Thi-Thao-Phuong; Jaffré, Jérôme; Japhet, Caroline; Kern, Michel; Roberts, Jean E., Space-time domain decomposition methods for diffusion problems in mixed formulations, SIAM J. Numer. Anal., 51, 6, 3532-3559, 2013 · Zbl 1295.65095 · doi:10.1137/130914401
[19] Hoang, Thi-Thao-Phuong; Japhet, Caroline; Kern, Michel; Roberts, Jean E., Space-time domain decomposition for reduced fracture models in mixed formulation, SIAM J. Numer. Anal., 54, 1, 288-316, 2016 · Zbl 1382.76164 · doi:10.1137/15M1009651
[20] Hytönen, Tuomas, van Neerven, Jan, Veraar, Mark, Weis, Lutz: Analysis in Banach spaces. Vol. I. Martingales and Littlewood-Paley theory, volume 63 of Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Cham, (2016) · Zbl 1366.46001
[21] King, Frederick W.: Hilbert transforms. Vol. 1, volume 124 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, (2009) · Zbl 1188.44005
[22] Kufner, Alois; John, Oldřich; Fučík, Svatopluk, Function spaces, 1977, Leyden; Academia, Prague: Noordhoff International Publishing, Leyden; Academia, Prague · Zbl 0364.46022
[23] Langer, Ulrich; Zank, Marco, Efficient direct space-time finite element solvers for parabolic initial-boundary value problems in anisotropic Sobolev spaces, SIAM J. Sci. Comput., 43, 4, A2714-A2736, 2021 · Zbl 07379634 · doi:10.1137/20M1358128
[24] Larsson, S., Schwab, C.: Compressive space-time galerkin discretizations of parabolic partial differential equations. Technical Report 2015-04, Seminar for Applied Mathematics, ETH Zürich, Switzerland, (2015)
[25] Lemarié, Florian; Debreu, Laurent; Blayo, Eric, Toward an optimized global-in-time Schwarz algorithm for diffusion equations with discontinuous and spatially variable coefficients. Part 1: The constant coefficients case, Electron. Trans. Numer. Anal., 40, 148-169, 2013 · Zbl 1288.65137
[26] Lemarié, Florian; Debreu, Laurent; Blayo, Eric, Toward an optimized global-in-time Schwarz algorithm for diffusion equations with discontinuous and spatially variable coefficients. Part 2: The variable coefficients case, Electron. Trans. Numer. Anal., 40, 170-186, 2013 · Zbl 1288.65138
[27] Lions, J.-L., Magenes, E.: Non-homogeneous boundary value problems and applications. Vol. I. Die Grundlehren der mathematischen Wissenschaften, Band . Springer-Verlag, New York-Heidelberg, (1972) · Zbl 0227.35001
[28] Lions, J.-L., Magenes, E.: Non-homogeneous boundary value problems and applications. Vol. II. Die Grundlehren der mathematischen Wissenschaften, Band 182. Springer-Verlag, New York-Heidelberg, (1972) · Zbl 0223.35039
[29] Lions, Pierre-Louis; Mercier, Bertrand, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16, 6, 964-979, 1979 · Zbl 0426.65050 · doi:10.1137/0716071
[30] Lucchetti, Roberto; Patrone, Fioravante, On Nemytskii’s operator and its application to the lower semicontinuity of integral functionals, Indiana Univ. Math. J., 29, 5, 703-713, 1980 · Zbl 0476.47049 · doi:10.1512/iumj.1980.29.29051
[31] Quarteroni, Alfio; Valli, Alberto, Domain decomposition methods for partial differential equations, 1999, Oxford University Press, New York: Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York · Zbl 0931.65118 · doi:10.1093/oso/9780198501787.001.0001
[32] Steinbach, Olaf, Yang, Huidong: Space-time finite element methods for parabolic evolution equations: discretization, a posteriori error estimation, adaptivity and solution. In Space-time methods—applications to partial differential equations, volume 25 of Radon Ser. Comput. Appl. Math., pages 207-248. De Gruyter, Berlin, (2019) · Zbl 1453.65344
[33] Steinbach, Olaf; Zank, Marco, Coercive space-time finite element methods for initial boundary value problems, Electron. Trans. Numer. Anal., 52, 154-194, 2020 · Zbl 1436.65144 · doi:10.1553/etna_vol52s154
[34] Tartar, Luc: An introduction to Sobolev spaces and interpolation spaces. Lecture Notes of the Unione Matematica Italiana, vol. 3. Springer, Berlin; UMI, Bologna (2007) · Zbl 1126.46001
[35] Toselli, A., Widlund, O.: Domain decomposition methods-algorithms and theory. Springer Series in Computational Mathematics, vol. 34. Springer-Verlag, Berlin (2005) · Zbl 1069.65138
[36] Weidmann, J.: Linear operators in Hilbert spaces. Graduate Texts in Mathematics, vol. 68. Springer-Verlag, New York-Berlin (1980) · Zbl 0434.47001
[37] Zank, Marco, An exact realization of a modified Hilbert transformation for space-time methods for parabolic evolution equations, Comput. Methods Appl. Math., 21, 2, 479-496, 2021 · Zbl 1475.65137 · doi:10.1515/cmam-2020-0026
[38] Zeidler, E.: Nonlinear functional analysis and its applications. II/B. Springer-Verlag, New York, 1990. Nonlinear monotone operators, Translated from the German by the author and Leo F. Boron · Zbl 0684.47028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.