×

The effective model structure and \(\infty\)-groupoid objects. (English) Zbl 1497.18033

Let \(\mathcal E\) be a countably lextensive category and let \(s\mathcal E\) be the category of simplicial objects in \(\mathcal E\). The authors construct a model structure on \(s\mathcal E\), called the effective model structure. When \(\mathcal E\) is the category of sets, the effective model structure recovers the Kan-Quillen model structure on simplicial sets. The effective model structure can be described as follows. For \(E\in\mathcal E\), consider the functor \[ \operatorname{Hom}_{\mathrm{sSet}}(E,-)\colon s\mathcal E\to \mathrm{sSet} \] sending \(X\in s\mathcal E\) to the simplicial set defined by \(\operatorname{Hom}_{\mathrm{sSet}}(E,X)_n=\operatorname{Hom}(E,X_n)\). A morphism in \(s\mathcal E\) is a fibration in the effictive model structure if its image under the above functor is a Kan fibration in \(\mathrm{sSet}\) for every \(E\in\mathcal E\). The trivial fibrations are defined analogously. The authors show that for every countably lextensive category \(\mathcal E\), the effective model structure with the above fibrations and trivial fibrations exists.
Besides the existence of the effective model structure, the main results are the following.
The effective model structure is left and right proper and homotopy colimits in \(s\mathcal E\) satisfy descent.
The associated \(\infty\)-category has finite limits and \(\alpha\)-small colimits satisfy descent if \(\mathcal E\) is \(\alpha\)-lextensive.
The associated \(\infty\)-category is locally Cartesian closed if \(\mathcal E\) is.
Besides the above properties, the associated \(\infty\)-category is not a higher topos in general.
The authors characterize the associated \(\infty\)-category as the full subcategory of the \(\infty\)-category of presheaves on \(\mathcal E\) spanned by Kan complexes in \(\mathcal E\).

MSC:

18N40 Homotopical algebra, Quillen model categories, derivators
18N60 \((\infty,1)\)-categories (quasi-categories, Segal spaces, etc.); \(\infty\)-topoi, stable \(\infty\)-categories
55U10 Simplicial sets and complexes in algebraic topology

Keywords:

model structure

References:

[1] Awodey, S. and Warren, M. A.Homotopy-theoretic models of identity types. Math. Proc. Camb. Phil. Soc., 146(1):45-55, 2009. · Zbl 1205.03065
[2] Bergner, J. and Rezk, C.Reedy categories and the \(\varTheta \) -construction. Math. Z., 274(1-2):499-514, 2013. · Zbl 1270.55014
[3] Van Den Berg, B. and Moerdijk, I.Exact completion of path categories and algebraic set theory. Part I: Exact completion of path categories. Journal of Pure and Applied Algebra, 222(10):3137-3181, 2018. · Zbl 1420.18034
[4] Van Den Berg, B. and Moerdijk, I.Univalent completion. Math. Ann., 371:1337-1350, 2018. · Zbl 1400.55007
[5] Brown, K. S.Abstract homotopy theory and generalized sheaf cohomology. Trans. Amer. Math. Soc., 186:419-458, 1973. · Zbl 0245.55007
[6] Carboni, A.Some free constructions in proof theory and realizability. J. Pure Appl. Algebra, 103(2):117-148, 1995. · Zbl 0839.18002
[7] Carboni, A., Lack, S., and Walters, R. F. C.Introduction to extensive and distributive categories. J. Pure Appl. Algebra, 84(2):145-158, 1993. · Zbl 0784.18001
[8] Carboni, A. and Vitale, E. M.Regular and exact completions. J. Pure Appl. Algebra, 125(1-3):79-116, 1998. · Zbl 0891.18002
[9] Chorny, B.Homotopy theory of relative simplicial presheaves. Israel J. Math., 205(1):471-484, 2015. · Zbl 1311.18012
[10] Chorny, B. and Dwyer, W. G.Homotopy theory of small diagrams over large categories. Forum Mathematicum, 21(2):167-179, 2009. · Zbl 1162.55014
[11] Christensen, J. D. and Hovey, M.Quillen model structures for relative homological algebra. Math. Proc. Cambridge Philos. Soc., 133(2):261-293, 2002. · Zbl 1016.18008
[12] Cisinski, D.-C.Higher categories and homotopical algebra. Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2020.
[13] Day, B. J. and Lack, S.Limits of small functors. J. Pure Appl. Algebra, 210(3):651-663, 2007. · Zbl 1120.18001
[14] Dror Farjoun, E.Homotopy theories for diagrams of spaces. Proc. Amer. Math. Soc., 101(1):181-189, 1987. · Zbl 0661.55017
[15] Dugger, D., Hollander, S., and Isaksen, D. C.Hypercovers and simplicial presheaves. Math. Proc. Camb. Phil. Soc., 136(1):9-51, 2004. · Zbl 1045.55007
[16] Dwyer, W. G. and Kan, D. M.Singular functors and realization functors. Indag. Math. (Proceedings), 87(2):147-153, 1984. · Zbl 0555.55019
[17] Elmendorf, A. D.Systems of fixed point sets. Trans. Amer. Math. Soc., 277(1):275-284, 1983. · Zbl 0521.57027
[18] Emmenegger, J. and Palmgren, E.Exact completion and constructive theories of sets. J. Symb. Logic, 85(2):563-584, 2020. · Zbl 1485.03257
[19] Fresse, B.Modules over operads and functors, volume 1967 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2009. · Zbl 1178.18007
[20] Gabriel, P. and Zisman, M.Calculus of fractions and homotopy theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35. Springer-Verlag New York, Inc., New York, 1967. · Zbl 0186.56802
[21] Gambino, N. and Sattler, C.The Frobenius property, right properness and uniform fibrations. J. Pure Appl. Algebra, 221:No. 12, 3027-3068, 2017. · Zbl 1378.18002
[22] Gambino, N., Sattler, C., and Szumiło, K. The constructive Kan-Quillen model structure: two new proofs. Quart. J. Math., 2022. https://doi.org/10.1093/qmath/haab057. · Zbl 1539.55016
[23] Gepner, D. and Kock, J.Univalence in locally cartesian closed \(\infty \) -categories. Forum Math., 29:617-652, 2017. · Zbl 1376.55018
[24] Goerss, P. and Jardine, J. F.Simplicial homotopy theory. Birkauser, 1999. · Zbl 0949.55001
[25] Henry, S. Weak model categories in classical and constructive mathematics. https://arxiv.org/abs/1807.02650, 2018.
[26] Henry, S. A constructive account of the Kan-Quillen model structure and of Kan’s \({\text{Ex}}^{\infty }\) functor. https://arxiv.org/abs/1905.06160, 2019.
[27] Henry, S. Combinatorial and accessible weak model categories. https://arxiv.org/abs/2005.02360, 2020.
[28] Hofmann, M.Extensional concepts in intensional type theory. Springer, 1997. · Zbl 1411.03001
[29] Hörmann, F. Model category structures on simplicial objects. https://arxiv.org/abs/2103.01156, 2021.
[30] Hu, H. and Tholen, W.A note on free regular and exact completions and their infinitary generalizations. Theor. App. Cat., 2(10):113-132, 1996. · Zbl 0872.18004
[31] Hyland, J. M. E.The effective topos. In Troelstra, A. S. and Van Dalen, D., editors, The L. E. J. Brouwer Centenary Symposium, pages 165-216. North-Holland, 1982. · Zbl 0522.03055
[32] Jardine, J. F.Boolean localisation in practice. Documenta Mathematica, 1:245-275, 1996. · Zbl 0858.55018
[33] Johnstone, P. T.Sketches of an elephant: a topos theory compendium. Vol. 1, volume 43 of Oxford Logic Guides. The Clarendon Press, Oxford University Press, New York, 2002. · Zbl 1071.18001
[34] Joyal, A. Letter to A. Grothendieck. https://webusers.imj-prg.fr/ georges.maltsiniotis/ps/lettreJoyal.pdf, 1984.
[35] Joyal, A. and Tierney, M.Quasi categories vs Segal spaces. In Davydov, A., Batanin, M., Johnson, M., Lack, S., and Neeman, A., editors, Categories in algebra, geometry and mathematical physics, volume 431 of Contemp. Math., pages 277-326. Amer. Math. Soc., 2007. · Zbl 1138.55016
[36] Kapulkin, C. and Lefanu Lumsdaine, P.The simplicial model of Univalent Foundations (after Voevodsky). J. Eur. Math. Soc., 23:2071-2126, 2021. · Zbl 1471.18025
[37] Lurie, J.Higher topos theory. Princeton University Press, 2009. · Zbl 1175.18001
[38] Mac Lane, S. and Moerdijk, I.Sheaves in geometry and logic - A first introduction to topos theory. Springer, 1992. · Zbl 0822.18001
[39] Menni, M.A characterization of the left exact categories whose exact completions are toposes. J. Pure Appl. Algebra, 177(3):287-301, 2003. · Zbl 1050.18002
[40] Quillen, D. G.Homotopical algebra, volume 43 of Lecture Notes in Mathematics. Springer, 1967. · Zbl 0168.20903
[41] Rasekh, N. A theory of elementary higher toposes. https://arxiv.org/abs/1805.03805, 2018.
[42] Rezk, C.A model for the homotopy theory of homotopy theories. Trans. Amer. Math. Soc., 353(3):973-1007, 2001. · Zbl 0961.18008
[43] Rezk, C. Toposes and homotopy toposes. https://faculty.math.illinois.edu/ rezk/homotopy-topos-sketch.pdf, 2010.
[44] Riehl, E.Categorical Homotopy Theory. Cambridge University Press, 2014. · Zbl 1317.18001
[45] Riehl, E. and Verity, D.The theory and practice of Reedy categories. Theory Appl. Categ., 29:256-301, 2014. · Zbl 1302.55014
[46] Rădulescu-Banu, A. Cofibrations in homotopy theory. https://arxiv.org/abs/math/0610009v4, 2006.
[47] Sattler, C. The equivalence extension property and model structures. https://arxiv.org/abs/1704.06911, 2017.
[48] Shulman, M. Elementary \(\left(\infty, 1\right)\) -topoi. https://golem.ph.utexas.edu/category/2017/04/elementary_1topoi.html, 2017.
[49] Shulman, M. All \(\left(\infty, 1\right)\) -toposes have strict univalent universes. https://arxiv.org/abs/1904.07004, 2019.
[50] Spitzweck, M. Operads, algebras and modules in general model categories. https://arxiv.org/abs/math/0101102, 2001. · Zbl 1103.18300
[51] Steimle, W. Degeneracies in quasi-categories. https://arxiv.org/abs/1702.08696, 2017. · Zbl 1432.55018
[52] Stephan, M.On equivariant homotopy theory for model categories. Homol. Homotopy Appl., 18(2):183-208, 2016. · Zbl 1357.18005
[53] Szumiło, K.Homotopy theory of cocomplete quasicategories. Alg. Geom. Top., 17:765-791, 2017. · Zbl 1364.55019
[54] Toën, B. and Vezzosi, G.Homotopical algebraic geometry I: Higher Topos Theory. Adv. Math., 193:257-372, 2005. · Zbl 1120.14012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.