×

Three-mode factor analysis by means of Candecomp/Parafac. (English) Zbl 1308.62127

Summary: A three-mode covariance matrix contains covariances of \(N\) observations (e.g., subject scores) on \(J\) variables for \(K\) different occasions or conditions. We model such an \(JK\times JK\) covariance matrix as the sum of a (common) covariance matrix having Candecomp/Parafac form, and a diagonal matrix of unique variances. The Candecomp/Parafac form is a generalization of the two-mode case under the assumption of parallel factors. We estimate the unique variances by Minimum Rank Factor Analysis. The factors can be chosen oblique or orthogonal. Our approach yields a model that is easy to estimate and easy to interpret. Moreover, the unique variances, the factor covariance matrix, and the communalities are guaranteed to be proper, a percentage of explained common variance can be obtained for each variable-condition combination, and the estimated model is rotationally unique under mild conditions. We apply our model to several datasets in the literature, and demonstrate our estimation procedure in a simulation study.

MSC:

62H25 Factor analysis and principal components; correspondence analysis
62P15 Applications of statistics to psychology

Software:

PARAFAC
Full Text: DOI

References:

[1] Acar, E., & Yener, B. (2009). Unsupervised multiway data analysis: a literature survey. IEEE Transactions on Knowledge and Data Engineering, 21, 1-15. · doi:10.1109/TKDE.2008.112
[2] Bentler, P.M., & Lee, S.-Y. (1978). Statistical aspects of a three-mode factor analysis model. Psychometrika, 43, 343-352. · Zbl 0383.62033 · doi:10.1007/BF02293644
[3] Bentler, P.M., & Lee, S.-Y. (1979). A statistical development of three-mode factor analysis. British Journal of Mathematical and Statistical Psychology, 32, 87-104. · Zbl 0496.62091 · doi:10.1111/j.2044-8317.1979.tb00754.x
[4] Bloxom, B. (1968). A note on invariance in three-mode factor analysis. Psychometrika, 33, 347-350. · doi:10.1007/BF02289329
[5] Bro, R., Harshman, R.A., Sidiropoulos, N.D., & Lundy, M.E. (2009). Modeling multi-way data with linearly dependent loadings. Journal of Chemometrics, 23, 324-340. · doi:10.1002/cem.1206
[6] Browne, M.W. (1984). The decomposition of multitrait-multimethod matrices. British Journal of Mathematical and Statistical Psychology, 37, 1-21. · Zbl 0551.62073 · doi:10.1111/j.2044-8317.1984.tb00785.x
[7] Campbell, D.T., & Fiske, D.W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological Bulletin, 56, 81-105. · doi:10.1037/h0046016
[8] Carroll, J.D., & Chang, J.J. (1970). Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition. Psychometrika, 35, 283-319. · Zbl 0202.19101 · doi:10.1007/BF02310791
[9] Ceulemans, E., & Kiers, H.A.L. (2006). Selecting among three-mode principal component models of different types and complexities: a numerical convex hull based method. British Journal of Mathematical and Statistical Psychology, 59, 133-150. · doi:10.1348/000711005X64817
[10] Comon, P.; Lathauwer, L.; Comon, P. (ed.); Jutten, C. (ed.), Algebraic identification of under-determined mixtures, 325-366 (2010), San Diego · doi:10.1016/B978-0-12-374726-6.00014-X
[11] De Almeida, A.L.F., Favier, G., & Mota, J.C.M. (2008a). Constrained tensor modeling approach to blind multiple-antenna CDMA schemes. IEEE Transactions on Signal Processing, 56, 2417-2428. · Zbl 1390.94522 · doi:10.1109/TSP.2008.917028
[12] De Almeida, A.L.F., Favier, G., & Mota, J.C.M. (2008b). A constrained factor decomposition with application to MIMO antenna systems. IEEE Transactions on Signal Processing, 56, 2429-2442. · Zbl 1390.94809 · doi:10.1109/TSP.2008.917026
[13] Lathauwer, L.; Comon, P. (ed.); Jutten, C. (ed.), Algebraic methods after prewhitening, 155-178 (2010), San Diego · doi:10.1016/B978-0-12-374726-6.00010-2
[14] De Silva, V., & Lim, L.-H. (2008). Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM Journal on Matrix Analysis and Applications, 30, 1084-1127. · Zbl 1167.14038 · doi:10.1137/06066518X
[15] Eckart, C., & Young, G. (1936). The approximation of one matrix by another of lower rank. Psychometrika, 1, 211-218. · JFM 62.1075.02 · doi:10.1007/BF02288367
[16] Eid, M. (2000). A multitrait-multimethod model with minimal assumptions. Psychometrika, 65, 241-261. · Zbl 1291.62203 · doi:10.1007/BF02294377
[17] Eid, M., Nussbeck, F.W., Geiser, C., Cole, D.A., Gollwitzer, M., & Lischetzke, T. (2008). Structural equation modeling of multitrait-multimethod data: different models for different types of methods. Psychological Methods, 13, 230-253. · doi:10.1037/a0013219
[18] Harshman, R.A. (1970). Foundations of the Parafac procedure: models and conditions for an “explanatory” multimodal factor analysis. UCLA Working Papers in Phonetics, 16, 1-84.
[19] Harshman, R. A.; Lundy, M. E.; Law, H. G. (ed.); Snyder, C. W. (ed.); Hattie, J. A. (ed.); McDonald, R. P. (ed.), Data preprocessing and the extended Parafac model, 216-284 (1984), New York
[20] Harshman, R. A., The problem and nature of degenerate solutions or decompositions of 3-way arrays, Palo Alto, USA
[21] Hitchcock, F.L. (1927a). The expression of a tensor or a polyadic as a sum of products. Journal of Mathematics and Physics, 6, 164-189. · JFM 53.0095.01
[22] Hitchcock, F.L. (1927b). Multiple invariants and generalized rank of a p-way matrix or tensor. Journal of Mathematics and Physics, 7, 39-70. · JFM 53.0097.01
[23] Jöreskog, K.G. (1970). A general method for analysis of covariance structures. Biometrika, 57, 239-251. · Zbl 0195.48801 · doi:10.1093/biomet/57.2.239
[24] Jöreskog, K.G. (1971). Statistical analysis of sets of congeneric tests. Psychometrika, 36, 109-133. · Zbl 0217.51502 · doi:10.1007/BF02291393
[25] Kiers, H.A.L. (1998a). Three-way SIMPLIMAX for oblique rotation of the three-mode factor analysis core to simple structure. Computational Statistics and Data Analysis, 28, 307-324. · Zbl 1042.62559 · doi:10.1016/S0167-9473(98)00041-3
[26] Kiers, H.A.L. (1998b). Joint orthomax rotation of the core and component matrices resulting from three-mode principal components analysis. Journal of Classification, 15, 245-263. · Zbl 0917.62055 · doi:10.1007/s003579900033
[27] Kiers, H.A.L., Kroonenberg, P.M., & Ten Berge, J.M.F. (1992). An efficient algorithm for TUCKALS3 on data with large number of observation units. Psychometrika, 57, 415-422. · doi:10.1007/BF02295429
[28] Kiers, H.A.L., Takane, Y., & Ten Berge, J.M.F. (1996). The analysis of multitrait-multimethod matrices via constrained component analysis. Psychometrika, 61, 601-628. · Zbl 0871.62052 · doi:10.1007/BF02294039
[29] Kiers, H.A.L., & Van Mechelen, I. (2001). Three-way component analysis: principles and illustrative application. Psychological Methods, 6, 84-110. · doi:10.1037/1082-989X.6.1.84
[30] Kolda, T.G., & Bader, B.W. (2009). Tensor decompositions and applications. SIAM Review, 51, 455-500. · Zbl 1173.65029 · doi:10.1137/07070111X
[31] Krijnen, W.P., Dijkstra, T.K., & Stegeman, A. (2008). On the non-existence of optimal solutions and the occurrence of “degeneracy” in the Candecomp/Parafac model. Psychometrika, 73, 431-439. · Zbl 1301.62121 · doi:10.1007/s11336-008-9056-1
[32] Kroonenberg, P.M., & De Leeuw, J. (1980). Principal component analysis of three-mode data by means of alternating least squares algorithms. Psychometrika, 45, 69-97. · Zbl 0431.62035 · doi:10.1007/BF02293599
[33] Kroonenberg, P.M., & Oort, F.J. (2003). Three-mode analysis of multimode covariance matrices. British Journal of Mathematical and Statistical Psychology, 56, 305-335. · doi:10.1348/000711003770480066
[34] Kroonenberg, P.M. (2008). Wiley series in probability and statistics. Applied multiway data analysis. Hoboken: Wiley. · Zbl 1160.62002
[35] Kruskal, J.B. (1977). Three-way arrays: rank and uniqueness of trilinear decompositions, with applications to arithmetic complexity and statistics. Linear Algebra and Its Applications, 18, 95-138. · Zbl 0364.15021 · doi:10.1016/0024-3795(77)90069-6
[36] Kruskal, J. B.; Harshman, R. A.; Lundy, M. E.; Coppi, R. (ed.); Bolasco, S. (ed.), How 3-MFA data can cause degenerate Parafac solutions, among other relationships, 115-121 (1989), Amsterdam
[37] Lipkus, I.M., Dalbert, C., & Siegler, I.C. (1996). The importance of distinguishing the belief in a just world for self versus for others: implications for psychological well-being. Personality and Social Psychology Bulletin, 22, 666-677. · doi:10.1177/0146167296227002
[38] Liu, X., & Sidiropoulos, N.D. (2001). Cramér-Rao lower bounds for low-rank decomposition of multidimensional arrays. IEEE Transactions on Signal Processing, 49, 2074-2086. · doi:10.1109/78.942635
[39] Lorenzo-Seva, U., & Ten Berge, J.M.F. (2006). Tucker’s congruence coefficient as a meaningful index of factor similarity. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 2, 57-64.
[40] Millsap, R.E. (1992). Sufficient conditions for rotational uniqueness in the additive MTMM model. British Journal of Mathematical and Statistical Psychology, 45, 125-138. · doi:10.1111/j.2044-8317.1992.tb00981.x
[41] Paatero, P. (2000). Construction and analysis of degenerate Parafac models. Journal of Chemometrics, 14, 285-299. · doi:10.1002/1099-128X(200005/06)14:3<285::AID-CEM584>3.0.CO;2-1
[42] Smilde, A., Bro, R., & Geladi, P. (2004). Multi-way analysis: applications in the chemical sciences. Chichester: Wiley.
[43] Sočan, G. (2003). The incremental value of minimum rank factor analysis. Ph.D. Thesis, Department of Psychometrics & Statistics, University of Groningen, Groningen, The Netherlands. · Zbl 0202.19101
[44] Stegeman, A. (2006). Degeneracy in Candecomp/Parafac explained for p×p×2 arrays of rank p+1 or higher. Psychometrika, 71, 483-501. · Zbl 1306.62504 · doi:10.1007/s11336-004-1266-6
[45] Stegeman, A. (2007). Degeneracy in Candecomp/Parafac explained for several three-sliced arrays with a two-valued typical rank. Psychometrika, 72, 601-619. · Zbl 1291.62246 · doi:10.1007/s11336-007-9022-3
[46] Stegeman, A. (2008). Low-rank approximation of generic p×q×2 arrays and diverging components in the Candecomp/Parafac model. SIAM Journal on Matrix Analysis and Applications, 30, 988-1007. · Zbl 1167.15301 · doi:10.1137/050644677
[47] Stegeman, A. (2009). Using the simultaneous generalized Schur decomposition as a Candecomp/Parafac algorithm for ill-conditioned data. Journal of Chemometrics, 23, 385-392. · doi:10.1002/cem.1232
[48] Stegeman, A. (2012). Candecomp/Parafac—from diverging components to a decomposition in block terms. SIAM Journal on Matrix Analysis and Applications, 33, 291-316. · Zbl 1250.65062 · doi:10.1137/110825327
[49] Stegeman, A., & Sidiropoulos, N.D. (2007). On Kruskal’s uniqueness condition for the Candecomp/Parafac decomposition. Linear Algebra and Its Applications, 420, 540-552. · Zbl 1120.15002 · doi:10.1016/j.laa.2006.08.010
[50] Stegeman, A., & de Almeida, A.L.F. (2009). Uniqueness conditions for constrained three-way factor decompositions with linearly dependent loadings. SIAM Journal on Matrix Analysis and Applications, 31, 1469-1490. · Zbl 1197.15016 · doi:10.1137/080743354
[51] Stegeman, A., & Lam, T.T.T. (2012). Improved uniqueness conditions for canonical tensor decompositions with linearly dependent loadings. SIAM Journal on Matrix Analysis and Applications, 33, 1250-1271. · Zbl 1263.15028 · doi:10.1137/110847275
[52] Ten Berge, J.M.F., & Kiers, H.A.L. (1991). A numerical approach to the approximate and the exact minimum rank of a covariance matrix. Psychometrika, 56, 309-315. · Zbl 0850.62462 · doi:10.1007/BF02294464
[53] Tendeiro, J.N., Ten Berge, J.M.F., & Kiers, H.A.L. (2009). Simplicity transformations for three-way arrays with symmetric slices, and applications to Tucker-3 models with sparse core arrays. Linear Algebra and Its Applications, 430, 924-940. · Zbl 1274.62413 · doi:10.1016/j.laa.2008.09.020
[54] Tucker, L.R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika, 31, 279-311. · doi:10.1007/BF02289464
[55] Widaman, K.F. (1985). Hierarchically nested covariance structure models for multitrait-multimethod data. Applied Psychological Measurement, 9, 1-26. · doi:10.1177/014662168500900101
[56] Wothke, W.; Marcoulides, G. A. (ed.); Schumacker, R. E. (ed.), Models for multitrait-multimethod matrix analysis, 7-56 (1996), Mahwah · Zbl 1008.62707
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.