×

Micro-canonical statistical mechanics of some non-extensive systems. (English) Zbl 0991.82003

Summary: Non-extensive systems are not allowed to go to the thermodynamic limit. Therefore statistical mechanics has to be reformulated without invoking the thermodynamical limit. That is, we have to go back to pre-Gibbsian times. It is shown that Boltzmann’s mechanical definition of entropy \(S\) as a function of the conserved “extensive” variables energy \(E\), particle number \(N\), etc., allows the description of even the most sophisticated cases of phase transitions unambiguously for “small” systems like nuclei, atomic clusters, and self-gravitating astrophysical systems. The rich topology of the curvature of \(S(E,N)\) shows the whole “zoo” of transitions: transitions of first order including the surface tension at phase separation, continuous transitions, critical and multi-critical points. The transitions are the “catastrophes” of the Laplace transform from the “extensive” to the “intensive””variables. Moreover, this classification of phase transitions is much more natural than the Yang-Lee criterion.

MSC:

82B03 Foundations of equilibrium statistical mechanics

References:

[1] Tsallis, C., Possible generalization of Boltzmann-Gibbs statistics, J Stat Phys, 52, 479 (1988) · Zbl 1082.82501
[2] Leib EH, Yngvason J. The physics and mathematics of the second law of thermodynamics. Phys Rep 1999;310:1-96. Available from cond-mat/9708200; Leib EH, Yngvason J. The physics and mathematics of the second law of thermodynamics. Phys Rep 1999;310:1-96. Available from cond-mat/9708200 · Zbl 1027.80504
[3] Lieb EH, Yngvason J. A guide to entropy and the second law of thermodynamics. 1998. Available from mat-ph/9805005; Lieb EH, Yngvason J. A guide to entropy and the second law of thermodynamics. 1998. Available from mat-ph/9805005
[4] Gibbs JW. Collected works and commentary, vols. I and II. New Haven (CT): Yale University Press; 1936; Gibbs JW. Collected works and commentary, vols. I and II. New Haven (CT): Yale University Press; 1936
[5] Gibbs JW. Elementary principles in statistical physics. The collected works of J. Willard Gibbs, vol. II. New Haven (CT): Yale University Press; 1902. Also New York: Longmans & Green; 1928; Gibbs JW. Elementary principles in statistical physics. The collected works of J. Willard Gibbs, vol. II. New Haven (CT): Yale University Press; 1902. Also New York: Longmans & Green; 1928
[6] Pathria, R. K., Statisitical mechanics (1972), Pergamon Press: Pergamon Press Oxford
[7] Latora V, Baranger M, Rapisarda A, Tsallis C. The rate of entropy increase at the edge of chaos. 1999. http://arXiv:cond-mat/9907412; Latora V, Baranger M, Rapisarda A, Tsallis C. The rate of entropy increase at the edge of chaos. 1999. http://arXiv:cond-mat/9907412 · Zbl 1115.82327
[8] Boltzmann, L., Über die Beziehung eines algemeinen mechanischen Satzes zum Hauptsatz der Wärmelehre, Sitzungsber Akad Wiss Wien, 2, 67-73 (1877)
[9] Einstein, A., Eine Theorie der Grundlagen der Thermodynamik, Ann Phys Leipzig, 11, 170-187 (1903) · JFM 34.0962.01
[10] Einstein, A., Zur allgemeinen molekularen Theorie der Wärme, Ann Phys Leipzig, 14, 354-362 (1904) · JFM 35.0918.01
[11] Ehrenfest P, Ehrenfest T. Begriffliche Grundlagen der statistischen Auffassung in der Mechanik. Enzycl. d. Mathem. Wissenschaften, vol. 4. 1912 [The conceptual foundation of the statistical approach in mechanics. Ithaca (NY): Cornell University Press; 1959]; Ehrenfest P, Ehrenfest T. Begriffliche Grundlagen der statistischen Auffassung in der Mechanik. Enzycl. d. Mathem. Wissenschaften, vol. 4. 1912 [The conceptual foundation of the statistical approach in mechanics. Ithaca (NY): Cornell University Press; 1959] · JFM 43.0763.01
[12] Yang, C. N.; Lee, T. D., Phys Rev, 87, 404 (1952) · Zbl 0048.43305
[13] Schrödinger, E., Statistical thermodynamics, a course of seminar lectures delivered in January-March 1944 at the School of Theoretical Physics (1946), Cambridge University Press: Cambridge University Press London · Zbl 0063.06825
[14] Gross, D. H.E., Statistical decay of very hot nuclei, the production of large clusters, Rep Prog Phys, 53, 605-658 (1990)
[15] Schmidt, M.; Kusche, R.; Kornmüller, W.; von Issendorff, B.; Haberland, H., Experimental determination of the melting point and specific heat for a free cluster of 139 sodium atoms, Phys Rev Lett, 79, 99 (1997)
[16] Haberland H. Backbending and first order transition in small sodium clusters. 1999. Private communication; Haberland H. Backbending and first order transition in small sodium clusters. 1999. Private communication
[17] Gross, D. H.E.; Madjet, M. E., Fragmentation phase transition in atomic clusters IV - the relation of the fragmentation phase transition to the bulk liquid-gas transition, Z Phys B, 104, 541-551 (1997), and http://xxx.lanl.gov/abs/cond-mat/9707100
[18] Boltzmann, L., Über die Begründung einer kinetischen Gastheorie auf anziehende Kräfte allein, Wien Ber, 89, 714 (1884) · JFM 16.1065.04
[19] van Hove, L., Quelques propriétés générales de l’intégrale de configuration d’un système de particules avec interaction, Physica, 15, 951 (1949) · Zbl 0036.40602
[20] Straley, J. P.; Fisher, M. E., Three-state Potts model and anomalous tricritical points, J Phys A Math Nucl Gen, 6, 1310-1326 (1973)
[21] Gibbs JW. Graphical methods in the thermodynamics of fluids. The scientific papers of J. Willard Gibbs, vol. 1. New York: Longmans & Green; 1906; Gibbs JW. Graphical methods in the thermodynamics of fluids. The scientific papers of J. Willard Gibbs, vol. 1. New York: Longmans & Green; 1906
[22] Gross, D. H.E.; Ecker, A.; Zhang, X. Z., Microcanonical thermodynamics of first order phase transitions studied in the Potts model, Ann Phys Leipzig, 5, 446-452 (1996), and http://xxx.lanl.gov/abs/cond-mat/9607150
[23] Baxter, R. J., J Phys C, 6, L445 (1973)
[24] Binder, K., Monte Carlo methods in statistical physics (1978), Springer: Springer Berlin
[25] Binder, K., Monte Carlo calculation of the surface tension for two- and three-dimensional lattice-gas models, Phys Rev A, 25, 1699-1709 (1982)
[26] Lawrie ID, Sarbach S. Theory of tricritical points. In: Domb C, Lebowitz JL, editors. Phase transitions and critical phenomena, vol. 9. New York: Academic Press; 1984. p. 2-155 [chapter 1]; Lawrie ID, Sarbach S. Theory of tricritical points. In: Domb C, Lebowitz JL, editors. Phase transitions and critical phenomena, vol. 9. New York: Academic Press; 1984. p. 2-155 [chapter 1]
[27] Andersen, H. C., J Chem Phys, 72, 2284 (1980)
[28] Gross DHE. Microcanonical thermodynamics: phase transitions in “small” systems. World Scientific, 2001, in print; Gross DHE. Microcanonical thermodynamics: phase transitions in “small” systems. World Scientific, 2001, in print
[29] Hill, T. L., J Phys Chem, 23, 812 (1955)
[30] Hertel, P.; Thirring, W., Ann Phys NY, 63, 530 (1971)
[31] Hertel, P.; Narnhofer, H.; Thirring, W., Commun Math Phys, 28, 159 (1972)
[32] Stahl, B.; Kiesling, M.; Schindler, K., Phase transitions in graviting systems and the formation of condensed objects, Planet Space Sci, 43, 271-282 (1995)
[33] Kiessling, M.; Percus, J. K., Nonuniform van der Waals theory, J Stat Phys, 78, 1337-1376 (1995) · Zbl 1080.82533
[34] Laliena, V., The effect of angular momentum conservation in the phase transitions of collapsing systems, Phys. Rev. E, 59, 4786-4794 (1999), [http://xxx.lanl.gov/abs/cond-mat/9806241]
[35] Weinhold F. Metric geometry of equilibrium thermodynamics. J Chem Phys 1975;63:2479,2484,2488,2496; Weinhold F. Metric geometry of equilibrium thermodynamics. J Chem Phys 1975;63:2479,2484,2488,2496
[36] Weinhold F. Geometrical aspects of equilibrium thermodynamics. In: Eyring H, Henderson D, editors. Theoretical chemistry, advances and perspectives, vol. 3. New York: Academic Press; 1978. p. 16-52 [chapter 2]; Weinhold F. Geometrical aspects of equilibrium thermodynamics. In: Eyring H, Henderson D, editors. Theoretical chemistry, advances and perspectives, vol. 3. New York: Academic Press; 1978. p. 16-52 [chapter 2]
[37] Gross DHE, Votyakov E. Phase transitions in finite systems = topological peculiarities of the microcanonical entropy surface. 1999. p. 4. http://xxx.lanl.gov/abs/cond-mat/9904073; Gross DHE, Votyakov E. Phase transitions in finite systems = topological peculiarities of the microcanonical entropy surface. 1999. p. 4. http://xxx.lanl.gov/abs/cond-mat/9904073
[38] Gross DHE, Votyakov E. Phase transitions in “small” systems. Eur Phys J B 2000;15:115-126. http://arXiv.org/abs/cond-mat/?9911257; Gross DHE, Votyakov E. Phase transitions in “small” systems. Eur Phys J B 2000;15:115-126. http://arXiv.org/abs/cond-mat/?9911257
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.