×

Asymptotic analysis of a tumor growth model with fractional operators. (English) Zbl 1476.35284

The authors perform the asymptotic analysis of an evolutionary system generalizing a system of partial differential equations which model tumor growth. The system under consideration is a coupling of three semilinear evolution equations involving fractional powers of three (possibly different) selfadjoint monotone unbounded linear operators having compact resolvents. The coupled equations also contain two (small) positive relaxation parameters. (When the three involved fractional powers coincide with the minus Laplacian operator with zero Neumann boundary condition, the evolutionary system becomes a relaxed version of a phase field system of Cahn-Hilliard type modelling tumor growth.) The authors essentially show that, as the two relaxation parameters approach zero, either separately or simultaneously, the evolutionary system approaches a meaningful limit system for which the existence of solutions can be proved. To be able to do so, they use the (previously established) well-posedness and regularity results for the considered system. The asymptotic analysis requires some specific assumptions on the admissible nonlinearities.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
92C37 Cell biology
92C17 Cell movement (chemotaxis, etc.)
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35B65 Smoothness and regularity of solutions to PDEs
35B40 Asymptotic behavior of solutions to PDEs
26A33 Fractional derivatives and integrals
35R11 Fractional partial differential equations

References:

[1] B. Baeumer, M. Kovács and M.M. Meerschaert, Numerical solutions for fractional reaction-diffusion equations,Comput. Math. Appl.55(2008), 2212-2226. doi:10.1016/j.camwa.2007.11.012. · Zbl 1142.65422
[2] N. Bellomo, N.K. Li and P.K. Maini, On the foundations of cancer modelling: Selected topics, speculations, and perspectives,Math. Models Methods Appl. Sci.18(2008), 593-646. doi:10.1142/S0218202508002796. · Zbl 1151.92014
[3] S. Bosia, M. Conti and M. Grasselli, On the Cahn-Hilliard-Brinkman system,Commun. Math. Sci.13(2015), 1541-1567. doi:10.4310/CMS.2015.v13.n6.a9. · Zbl 1330.35313
[4] H. Brezis,Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North-Holland Math. Stud., Vol. 5, North-Holland, Amsterdam, 1973. · Zbl 0252.47055
[5] J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy,J. Chem. Phys.28(1958), 258-267. doi:10.1063/1.1744102. · Zbl 1431.35066
[6] C. Cavaterra, E. Rocca and H. Wu, Long-time dynamics and optimal control of a diffuse interface model for tumor growth, Appl. Math. Optim.(2019). doi:10.1007/s00245-019-09562-5. · Zbl 1464.35357
[7] S.K. Chandra and M.K. Bajpai, Mesh free alternate directional implicit method based three dimensional super-diffusive model for benign brain tumor segmentation,Comput. Math. Appl.77(2019), 3212-3223. doi:10.1016/j.camwa.2019.02. 009. · Zbl 1442.65150
[8] Y. Chen, S.M. Wise, V.B. Shenoy and J.S. Lowengrub, A stable scheme for a nonlinear multiphase tumor growth model with an elastic membrane,Int. J. Numer. Methods Biomed. Eng.30(2014), 726-754. doi:10.1002/cnm.2624.
[9] P. Colli and G. Gilardi, Well-posedness, regularity and asymptotic analyses for a fractional phase field system,Asymptot. Anal.114(2019), 93-128. doi:10.3233/ASY-191524. · Zbl 1443.35154
[10] P. Colli, G. Gilardi and D. Hilhorst, On a Cahn-Hilliard type phase field system related to tumor growth,Discrete Contin. Dyn. Syst.35(2015), 2423-2442. doi:10.3934/dcds.2015.35.2423. · Zbl 1342.35407
[11] P. Colli, G. Gilardi, G. Marinoschi and E. Rocca, Sliding mode control for a phase field system related to tumor growth, Appl. Math. Optim.79(2019), 647-670. doi:10.1007/s00245-017-9451-z. · Zbl 1420.35434
[12] P. Colli, G. Gilardi, E. Rocca and J. Sprekels, Vanishing viscosities and error estimate for a Cahn-Hilliard type phase field system related to tumor growth,Nonlinear Anal. Real World Appl.26(2015), 93-108. doi:10.1016/j.nonrwa.2015. 05.002. · Zbl 1334.35097
[13] P. Colli, G. Gilardi, E. Rocca and J. Sprekels, Asymptotic analyses and error estimates for a Cahn-Hilliard type phase field system modelling tumor growth,Discrete Contin. Dyn. Syst. Ser10(2017), 37-54. doi:10.3934/dcdss.2017002. · Zbl 1360.35296
[14] P. Colli, G. Gilardi, E. Rocca and J. Sprekels, Optimal distributed control of a diffuse interface model of tumor growth, Nonlinearity30(2017), 2518-2546. doi:10.1088/1361-6544/aa6e5f. · Zbl 1378.35175
[15] P. Colli, G. Gilardi and J. Sprekels, Optimal distributed control of a generalized fractional Cahn-Hilliard system,Appl. Math. Optim.(2018). doi:10.1007/s00245-018-9540-7. · Zbl 1447.35181
[16] P. Colli, G. Gilardi and J. Sprekels, Deep quench approximation and optimal control of general Cahn-Hilliard systems with fractional operators and double-obstacle potentials,Discrete Contin. Dyn. Syst. Ser. S., to appear (see also preprint (2018), 1-32,arXiv:1812.01675[math.AP]).
[17] P. Colli, G. Gilardi and J. Sprekels, Well-posedness and regularity for a generalized fractional Cahn-Hilliard system,Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl.30(2019), 437-478. doi:10.4171/RLM/855. · Zbl 1437.35425
[18] P. Colli, G. Gilardi and J. Sprekels, Longtime behavior for a generalized Cahn-Hilliard system with fractional operators, preprint (2019), 1-18,arXiv:1904.00931[math.AP].
[19] P. Colli, G. Gilardi and J. Sprekels, Well-posedness and regularity for a fractional tumor growth model,Adv. Math. Sci. Appl.28(2019), 343-375. · Zbl 1437.35425
[20] P. Colli, G. Gilardi and J. Sprekels, A distributed control problem for a fractional tumor growth model,Mathematics7 (2019), 792. doi:10.3390/math7090792. · Zbl 1451.49008
[21] M. Conti and A. Giorgini, The three-dimensional Cahn-Hilliard-Brinkman system with unmatched viscosities, preprint (2018), 1-34, hal-01559179. · Zbl 1434.35087
[22] V. Cristini, X. Li, J.S. Lowengrub and S.M. Wise, Nonlinear simulations of solid tumor growth using a mixture model: Invasion and branching,J. Math. Biol.58(2009), 723-763. doi:10.1007/s00285-008-0215-x. · Zbl 1311.92039
[23] V. Cristini and J.S. Lowengrub,Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach, Cambridge University Press, Cambridge, 2010.
[24] M. Dai, E. Feireisl, E. Rocca, G. Schimperna and M. Schonbek, Analysis of a diffuse interface model for multi-species tumor growth,Nonlinearity30(2017), 1639-1658. doi:10.1088/1361-6544/aa6063. · Zbl 1367.35185
[25] F. Della Porta, A. Giorgini and M. Grasselli, The nonlocal Cahn-Hilliard-Hele-Shaw system with logarithmic potential, Nonlinearity31(2018), 4851-4881. doi:10.1088/1361-6544/aad52a. · Zbl 1395.35163
[26] F. Della Porta and M. Grasselli, On the nonlocal Cahn-Hilliard-Brinkman and Cahn-Hilliard-Hele-Shaw systems,Commun. Pure Appl. Anal.15(2016), 299-317, Erratum:Commun. Pure Appl. Anal.16(2017), 369-372. doi:10.3934/cpaa. 2017018. · Zbl 1472.35290
[27] M. Ebenbeck and H. Garcke, Analysis of a Cahn-Hilliard-Brinkman model for tumour growth with chemotaxis,J. Differential Equations266(2019), 5998-6036. doi:10.1016/j.jde.2018.10.045. · Zbl 1410.35058
[28] G. Estrada-Rodriguez, H. Gimperlein, K.J. Painter and J. Stocek, Space-time fractional diffusion in cell movement models with delay,Math. Models Methods Appl. Sci.29(2019), 65-88. doi:10.1142/S0218202519500039. · Zbl 1411.92036
[29] L.R. Evangelista and E.K. Lenzi,Fractional Diffusion Equations and Anomalous Diffusion, Cambridge University Press, Cambridge, 2018. · Zbl 1457.35001
[30] A. Fasano, A. Bertuzzi and A. Gandolfi, Mathematical modeling of tumour growth and treatment, in:Complex Systems in Biomedicine, Springer, Milan, 2006, pp. 71-108. doi:10.1007/88-470-0396-2_3. · Zbl 1387.92050
[31] X. Feng and S.M. Wise, Analysis of a Darcy-Cahn-Hilliard diffuse interface model for the Hele-Shaw flow and its fully discrete finite element approximation,SIAM J. Numer. Anal.50(2012), 1320-1343. doi:10.1137/110827119. · Zbl 1426.76258
[32] H.B. Frieboes, F. Jin, Y.L. Chuang, S.M. Wise, J.S. Lowengrub and V. Cristini, Three-dimensional multispecies nonlinear tumor growth - II: Tumor invasion and angiogenesis,J. Theoret. Biol.264(2010), 1254-1278. doi:10.1016/j.jtbi.2010. 02.036. · Zbl 1406.92049
[33] A. Friedman, Mathematical analysis and challenges arising from models of tumor growth,Math. Models Methods Appl. Sci.17(2007), 1751-1772. doi:10.1142/S0218202507002467. · Zbl 1135.92013
[34] S. Frigeri, M. Grasselli and E. Rocca, On a diffuse interface model of tumor growth,European J. Appl. Math.26(2015), 215-243. doi:10.1017/S0956792514000436. · Zbl 1375.92031
[35] S. Frigeri, K.F. Lam and E. Rocca, On a diffuse interface model for tumour growth with non-local interactions and degenerate mobilities, in:Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs, P. Colli, A. Favini, E. Rocca, G. Schimperna and J. Sprekels, eds, Springer INdAM Series, Vol. 22, Springer, Cham, 2017, pp. 217- 254. doi:10.1007/978-3-319-64489-9_9. · Zbl 1382.35311
[36] S. Frigeri, K.F. Lam, E. Rocca and G. Schimperna, On a multi-species Cahn-Hilliard-Darcy tumor growth model with singular potentials,Comm Math Sci.16(2018), 821-856. doi:10.4310/CMS.2018.v16.n3.a11. · Zbl 1404.35456
[37] H. Garcke and K.F. Lam, Global weak solutions and asymptotic limits of a Cahn-Hilliard-Darcy system modelling tumour growth,AIMS Mathematics1(2016), 318-360. doi:10.3934/Math.2016.3.318. · Zbl 1434.35255
[38] H. Garcke and K.F. Lam, Analysis of a Cahn-Hilliard system with non-zero Dirichlet conditions modeling tumor growth with chemotaxis,Discrete Contin. Dyn. Syst.37(2017), 4277-4308. doi:10.3934/dcds.2017183. · Zbl 1360.35042
[39] H. Garcke and K.F. Lam, Well-posedness of a Cahn-Hilliard system modelling tumour growth with chemotaxis and active transport,European J. Appl. Math.28(2017), 284-316. doi:10.1017/S0956792516000292. · Zbl 1375.92011
[40] H. Garcke and K.F. Lam, On a Cahn-Hilliard-Darcy system for tumour growth with solution dependent source terms, in:Trends in Applications of Mathematics to Mechanics, E. Rocca, U. Stefanelli, L. Truskinovsky and A. Visintin, eds, Springer INdAM Series, Vol. 27, Springer, 2018. doi:10.1007/978-3-319-75940-1_12. · Zbl 1406.92296
[41] H. Garcke, K.F. Lam, R. Nürnberg and E. Sitka, A multiphase Cahn-Hilliard-Darcy model for tumour growth with necrosis,Math. Models Methods Appl. Sci.28(2018), 525-577. doi:10.1142/S0218202518500148. · Zbl 1380.92029
[42] H. Garcke, K.F. Lam and E. Rocca, Optimal control of treatment time in a diffuse interface model for tumour growth, Appl. Math. Optim.78(2018), 495-544. doi:10.1007/s00245-017-9414-4. · Zbl 1403.35139
[43] H. Garcke, K.F. Lam, E. Sitka and V. Styles, A Cahn-Hilliard-Darcy model for tumour growth with chemotaxis and active transport,Math. Models Methods Appl. Sci.26(2016), 1095-1148. doi:10.1142/S0218202516500263. · Zbl 1336.92038
[44] A. Giorgini, M. Grasselli and H. Wu, The Cahn-Hilliard-Hele-Shaw system with singular potential,Ann. Inst. H. Poincaré Anal. Non Linéaire35(2018), 1079-1118. doi:10.1016/j.anihpc.2017.10.002. · Zbl 1394.35356
[45] R. Granero-Belinchón, Global solutions for a hyperbolic-parabolic system of chemotaxis,J. Math. Anal. Appl.449(2017), 872-883. doi:10.1016/j.jmaa.2016.12.050. · Zbl 1356.35100
[46] A. Hawkins-Daarud, S. Prudhomme, K.G. van der Zee and J.T. Oden, Bayesian calibration, validation, and uncertainty quantification of diffuse interface models of tumor growth,J. Math. Biol.67(2013), 1457-1485. doi:10.1007/s00285012-0595-9. · Zbl 1280.35163
[47] A. Hawkins-Daarud, K.G. van der Zee and J.T. Oden, Numerical simulation of a thermodynamically consistent fourspecies tumor growth model,Int. J. Numer. Meth. Biomed. Eng.28(2012), 3-24. doi:10.1002/cnm.1467. · Zbl 1242.92030
[48] R.W. Ibrahim, H.K. Nashine and N. Kamaruddin, Hybrid time-space dynamical systems of growth bacteria with applications in segmentation,Math. Biosci.292(2017), 10-17. doi:10.1016/j.mbs.2017.07.007. · Zbl 1375.35603
[49] J. Jiang, H. Wu and S. Zheng, Well-posedness and long-time behavior of a non-autonomous Cahn-Hilliard-Darcy system with mass source modeling tumor growth,J. Differential Equations259(2015), 3032-3077. doi:10.1016/j.jde.2015.04. 009. · Zbl 1330.35039
[50] H. Joshi and B.K. Jha, Fractionally delineate the neuroprotective function of calbindin-D28k in Parkinson’s disease,Int. J. Biomath.11(2018), 1850103, 19 pp. doi:10.1142/S1793524518501036. · Zbl 1405.92045
[51] K.H. Karlsen and S. Ulusoy, On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion,Netw. Heterog. Media11(2016), 181-201. doi:10.3934/nhm.2016.11.181. · Zbl 1348.35289
[52] J.-L. Lions,Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969. · Zbl 0189.40603
[53] J.S. Lowengrub, E.S. Titi and K. Zhao, Analysis of a mixture model of tumor growth,European J. Appl. Math.24(2013), 691-734. doi:10.1017/S0956792513000144. · Zbl 1292.35153
[54] A. Massaccesi and E. Valdinoci, Is a nonlocal diffusion strategy convenient for biological populations in competition?, J. Math. Biol.74(2017), 113-147. doi:10.1007/s00285-016-1019-z. · Zbl 1362.35312
[55] A. Miranville, E. Rocca and G. Schimperna, On the long time behavior of a tumor growth model,J. Differential Equations 267(2019), 2616-2642. doi:10.1016/j.jde.2019.03.028. · Zbl 1416.35279
[56] J.T. Oden, A. Hawkins and S. Prudhomme, General diffuse-interface theories and an approach to predictive tumor growth modeling,Math. Models Methods Appl. Sci.20(2010), 477-517. doi:10.1142/S0218202510004313. · Zbl 1186.92024
[57] A. Signori, Optimal distributed control of an extended model of tumor growth with logarithmic potential,Appl. Math. Optim.(2018). doi:10.1007/s00245-018-9538-1. · Zbl 1448.35521
[58] A. Signori, Optimality conditions for an extended tumor growth model with double obstacle potential via deep quench approach,Evol. Equ. Control Theory(2019). doi:10.3934/eect.2020003. · Zbl 1431.35079
[59] A. Signori, Optimal treatment for a phase field system of Cahn-Hilliard type modeling tumor growth by asymptotic scheme,Math. Control Relat. Fields(2019). doi:10.3934/mcrf.2019040. · Zbl 1453.35032
[60] A. Signori, Vanishing parameter for an optimal control problem modeling tumor growth, preprint (2019), 1-22, arXiv:1903.04930[math.AP].
[61] J. Simon, Compact sets in the spaceLp(0, T;B),Ann. Mat. Pura Appl. (4)146(1987), 65-96. doi:10.1007/BF01762360. · Zbl 0629.46031
[62] A. Sohail, S. Arshad, S. Javed and K. Maqbool, Numerical analysis of fractional-order tumor model,Int. J. Biomath.8 (2015), 1550069, 13 pp. · Zbl 1327.34022
[63] J. Sprekels and H. Wu, Optimal distributed control of a Cahn-Hilliard-Darcy system with mass sources,Appl. Math. Optim.(2019). doi:10.1007/s00245-019-09555-4. · Zbl 1462.35147
[64] N.H. Sweilam and S.M. Al-Mekhlafi, Optimal control for a nonlinear mathematical model of tumor under immune suppression: A numerical approach,Optimal Control Appl. Methods39(2018), 1581-1596. doi:10.1002/oca.2427. · Zbl 1401.92113
[65] X.-M. Wang and H. Wu, Long-time behavior for the Hele-Shaw-Cahn-Hilliard system,Asymptot. Anal.78(2012), 217- 245. doi:10.3233/ASY-2012-1092. · Zbl 1246.35164
[66] X.-M. Wang and Z.-F. Zhang, Well-posedness of the Hele-Shaw-Cahn-Hilliard system,Ann. Inst. H. Poincaré Anal. Non Linéaire30(2013), 367-384. doi:10.1016/j.anihpc.2012.06.003. · Zbl 1291.35240
[67] S.M. Wise, J.S. Lowengrub and V. Cristini, An adaptive multigrid algorithm for simulating solid tumor growth using mixture models,Math. Comput. Modelling53(2011), 1-20. doi:10.1016/j.mcm.2010.07.007. · Zbl 1211.65123
[68] S.M. Wise, J.S. Lowengrub, H.B. Frieboes and V. Cristini, Three-dimensional multispecies nonlinear tumor growth - I: Model and numerical method,J. Theoret. Biol.253(2008), 524-543. doi:10.1016/j.jtbi.2008.03.027. · Zbl 1398.92135
[69] X. Wu, G.J. van Zwieten and K.G. van der Zee, Stabilized second-order splitting schemes for Cahn-Hilliard models with applications to diffuse-interface tumor-growth models,Int. J. Numer. Methods Biomed. Eng.30(2014), 180-203. doi:10. 1002/cnm.2597.
[70] Y.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.