×

From Vlasov equation to degenerate nonlocal Cahn-Hilliard equation. (English) Zbl 1522.35506

In this paper, the authors provide a rigorous mathematical framework to establish the hydrodynamic limit of the Vlasov model introduced by S. Takata and T. Noguchi [J. Stat. Phys. 172, No. 3, 880–903 (2018; Zbl 1400.82223)] in order to describe phase transition of fluids by kinetic equations. More specifically, they proved that, when the scale parameter tends to \(0\), this model converges to a nonlocal Cahn-Hilliard equation with degenerate mobility. For this purpose, the authors introduced apropriate forms of the short and long range potentials, and derived Helmhotlz free energy estimates. In particular, they proved a new weak compactness bound on the flux.

MSC:

35Q83 Vlasov equations
35Q35 PDEs in connection with fluid mechanics
35Q84 Fokker-Planck equations
82C40 Kinetic theory of gases in time-dependent statistical mechanics
82D05 Statistical mechanics of gases
76N15 Gas dynamics (general theory)

Citations:

Zbl 1400.82223

References:

[1] Bardos, C.; Degond, P., Global existence for the Vlasov-Poisson equation in \(3\) space variables with small initial data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2, 101-118 (1985) · Zbl 0593.35076 · doi:10.1016/s0294-1449(16)30405-x
[2] Cahn, JW, On spinodal decomposition, Acta Metall., 9, 795-801 (1961) · doi:10.1016/0001-6160(61)90182-1
[3] Cahn, JW; Hilliard, JE, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28, 258-267 (1958) · Zbl 1431.35066 · doi:10.1063/1.1744102
[4] Chen, Y.-Z., Wu, L.-C.: Second order elliptic equations and elliptic systems, vol. 174. In Translations of Mathematical Monographs. American Mathematical Society, Providence (1998). Translated from the 1991 Chinese original by Bei Hu · Zbl 0902.35003
[5] Davoli, E.; Scarpa, L.; Trussardi, L., Nonlocal-to-local convergence of Cahn-Hilliard equations: neumann boundary conditions and viscosity terms, Arch. Ration. Mech. Anal., 239, 117-149 (2021) · Zbl 1456.76139 · doi:10.1007/s00205-020-01573-9
[6] DiPerna, RJ; Lions, P-L, On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. Math. (2), 130, 321-366 (1989) · Zbl 0698.45010 · doi:10.2307/1971423
[7] Ebenbeck, M.; Garcke, H., On a Cahn-Hilliard-Brinkman model for tumor growth and its singular limits, SIAM J. Math. Anal., 51, 1868-1912 (2019) · Zbl 1420.35116 · doi:10.1137/18M1228104
[8] Ebenbeck, M.; Garcke, H.; Nürnberg, R., Cahn-Hilliard-Brinkman systems for tumour growth, Discrete Contin. Dyn. Syst. Ser. S, 14, 3989-4033 (2021) · Zbl 1480.35411 · doi:10.3934/dcdss.2021034
[9] El Ghani, N.; Masmoudi, N., Diffusion limit of the Vlasov-Poisson-Fokker-Planck system, Commun. Math. Sci., 8, 463-479 (2010) · Zbl 1193.35228 · doi:10.4310/CMS.2010.v8.n2.a9
[10] Elbar, C., Perthame, B., Poulain, A.: Degenerate Cahn-Hilliard and incompressible limit of a Keller-Segel model. Commun. Math. Sci. 20(7), 1901-1926 (2022) · Zbl 1507.35038
[11] Elbar, C., Skrzeczkowski, J.: Degenerate Cahn-Hilliard equation: from nonlocal to local. arXiv preprint arXiv:2208.08955 (2022) · Zbl 1514.35045
[12] Frieboes, HB; Jin, F.; Chuang, Y-L; Wise, SM; Lowengrub, JS; Cristini, V., Three-dimensional multispecies nonlinear tumor growth-II: tumor invasion and angiogenesis, J. Theor. Biol., 264, 1254-1278 (2010) · Zbl 1406.92049 · doi:10.1016/j.jtbi.2010.02.036
[13] Frigeri, S.; Lam, KF; Rocca, E.; Schimperna, G., On a multi-species Cahn-Hilliard-Darcy tumor growth model with singular potentials, Commun. Math. Sci., 16, 821-856 (2018) · Zbl 1404.35456 · doi:10.4310/CMS.2018.v16.n3.a11
[14] Garcke, H.; Lam, KF; Nürnberg, R.; Sitka, E., A multiphase Cahn-Hilliard-Darcy model for tumour growth with necrosis, Math. Models Methods Appl. Sci., 28, 525-577 (2018) · Zbl 1380.92029 · doi:10.1142/S0218202518500148
[15] Garcke, H.; Lam, KF; Sitka, E.; Styles, V., A Cahn-Hilliard-Darcy model for tumour growth with chemotaxis and active transport, Math. Models Methods Appl. Sci., 26, 1095-1148 (2016) · Zbl 1336.92038 · doi:10.1142/S0218202516500263
[16] Giovangigli, V., Kinetic derivation of Cahn-Hilliard fluid models, Phys. Rev. E, 104, 054109 (2021) · doi:10.1103/PhysRevE.104.054109
[17] Golse, F.; Lions, P-L; Perthame, B.; Sentis, R., Regularity of the moments of the solution of a transport equation, J. Funct. Anal., 76, 110-125 (1988) · Zbl 0652.47031 · doi:10.1016/0022-1236(88)90051-1
[18] Goudon, T., Hydrodynamic limit for the Vlasov-Poisson-Fokker-Planck system: analysis of the two-dimensional case, Math. Models Methods Appl. Sci., 15, 737-752 (2005) · Zbl 1074.82021 · doi:10.1142/S021820250500056X
[19] Grmela, M., On the approach to equilibrium in kinetic theory, J. Math. Phys., 15, 35-40 (1974) · Zbl 0323.76055 · doi:10.1063/1.1666498
[20] Horst, E., On the asymptotic growth of the solutions of the Vlasov-Poisson system, Math. Methods Appl. Sci., 16, 75-86 (1993) · Zbl 0782.35079 · doi:10.1002/mma.1670160202
[21] Kobayashi, K.; Ohashi, K.; Watanabe, M., Numerical analysis of vapor-liquid two-phase system based on the Enskog-Vlasov equation, AIP Conf. Proc., 1501, 1145-1151 (2012) · doi:10.1063/1.4769670
[22] Lions, P-L; Perthame, B., Propagation of moments and regularity for the \(3\)-dimensional Vlasov-Poisson system, Invent. Math., 105, 415-430 (1991) · Zbl 0741.35061 · doi:10.1007/BF01232273
[23] Lowengrub, JS; Frieboes, HB; Jin, F.; Chuang, Y-L; Li, X.; Macklin, P.; Wise, SM; Cristini, V., Nonlinear modelling of cancer: bridging the gap between cells and tumours, Nonlinearity, 23, R1-R91 (2010) · Zbl 1181.92046 · doi:10.1088/0951-7715/23/1/R01
[24] Masmoudi, N.; Tayeb, ML, Diffusion limit of a semiconductor Boltzmann-Poisson system, SIAM J. Math. Anal., 38, 1788-1807 (2007) · Zbl 1206.82133 · doi:10.1137/050630763
[25] Melchionna, S.; Ranetbauer, H.; Scarpa, L.; Trussardi, L., From nonlocal to local Cahn-Hilliard equation, Adv. Math. Sci. Appl., 28, 197-211 (2019) · Zbl 1471.45009
[26] Miranville, A.: The Cahn-Hilliard equation. . In: Recent advances and applications, vol. 95 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2019) · Zbl 1446.35001
[27] Perthame, B.; Poulain, A., Relaxation of the Cahn-Hilliard equation with singular single-well potential and degenerate mobility, Eur. J. Appl. Math., 32, 89-112 (2021) · Zbl 1504.35076 · doi:10.1017/S0956792520000054
[28] Perthame, B.; Souganidis, PE, A limiting case for velocity averaging, Ann. Sci. École Norm. Sup. (4), 31, 591-598 (1998) · Zbl 0956.45010 · doi:10.1016/S0012-9593(98)80108-0
[29] Pfaffelmoser, K., Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Differ. Equ., 95, 281-303 (1992) · Zbl 0810.35089 · doi:10.1016/0022-0396(92)90033-J
[30] Schaeffer, J., Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Commun. Part. Differ. Equ., 16, 1313-1335 (1991) · Zbl 0746.35050 · doi:10.1080/03605309108820801
[31] Simon, J., Compact sets in the space \(L^p(0, T;B)\), Ann. Mat. Pura Appl. (4), 146, 65-96 (1987) · Zbl 0629.46031 · doi:10.1007/BF01762360
[32] Takata, S.; Matsumoto, T.; Hattori, M., Kinetic model for the phase transition of the van der waals fluid, Phys. Rev. E, 103, 062110 (2021) · doi:10.1103/PhysRevE.103.062110
[33] Takata, S.; Noguchi, T., A simple kinetic model for the phase transition of the van der Waals fluid, J. Stat. Phys., 172, 880-903 (2018) · Zbl 1400.82223 · doi:10.1007/s10955-018-2068-z
[34] Wise, SM; Lowengrub, JS; Frieboes, HB; Cristini, V., Three-dimensional multispecies nonlinear tumor growth-I: model and numerical method, J. Theor. Biol., 253, 524-543 (2008) · Zbl 1398.92135 · doi:10.1016/j.jtbi.2008.03.027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.