×

Viscoelastic Cahn-Hilliard models for tumor growth. (English) Zbl 1524.35659

Summary: We introduce a new phase field model for tumor growth where viscoelastic effects are taken into account. The model is derived from basic thermodynamical principles and consists of a convected Cahn-Hilliard equation with source terms for the tumor cells and a convected reaction-diffusion equation with boundary supply for the nutrient. Chemotactic terms, which are essential for the invasive behavior of tumors, are taken into account. The model is completed by a viscoelastic system consisting of the Navier-Stokes equation for the hydrodynamic quantities, and a general constitutive equation with stress relaxation for the left Cauchy-Green tensor associated with the elastic part of the total mechanical response of the viscoelastic material. For a specific choice of the elastic energy density and with an additional dissipative term accounting for stress diffusion, we prove existence of global-in-time weak solutions of the viscoelastic model for tumor growth in two space dimensions \(d=2\) by the passage to the limit in a fully-discrete finite element scheme where a CFL condition, i.e. \(\Delta t\le Ch^2\), is required.
Moreover, in arbitrary dimensions \(d\in\{2,3\}\), we show stability and existence of solutions for the fully-discrete finite element scheme, where positive definiteness of the discrete Cauchy-Green tensor is proved with a regularization technique that was first introduced by J. W. Barrett and S. Boyaval [Math. Models Methods Appl. Sci. 21, No. 9, 1783–1837 (2011; Zbl 1256.35048)]. After that, we improve the regularity results in arbitrary dimensions \(d\in\{2,3\}\) and in two dimensions \(d=2\), where a CFL condition is required. Then, in two dimensions \(d=2\), we pass to the limit in the discretization parameters and show that subsequences of discrete solutions converge to a global-in-time weak solution. Finally, we present numerical results in two dimensions \(d=2\).

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
35K35 Initial-boundary value problems for higher-order parabolic equations
76A10 Viscoelastic fluids
76M10 Finite element methods applied to problems in fluid mechanics

Citations:

Zbl 1256.35048

Software:

FEniCS

References:

[1] Abels, H., Garcke, H. and Grün, G., Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities, Math. Models Methods Appl. Sci.22 (2012) 1150013. · Zbl 1242.76342
[2] A. Agosti, P. Colli, H. Garcke and E. Rocca, A Cahn-Hilliard model coupled to viscoelasticity with large deformations, preprint (2022), arXiv:2204.04951.
[3] Alt, H. W., Linear Functional Analysis: An Application-Oriented Introduction (Springer, 2016). · Zbl 1358.46002
[4] Ambrosi, D. and Preziosi, L., Cell adhesion mechanisms and stress relaxation in the mechanics of tumours, Biomech. Model. Mechanobiol.8 (2009) 397-413.
[5] Azérad, P. and Guillén-González, F. M., Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluid dynamics, SIAM J. Math. Anal.33 (2001) 847-859. · Zbl 0999.35072
[6] Barrett, J. W. and Boyaval, S., Existence and approximation of a (regularized) Oldroyd-B model, Math. Models Methods Appl. Sci.21 (2011) 1783-1837. · Zbl 1256.35048
[7] Barrett, J. W. and Boyaval, S., Finite element approximation of the FENE-P model, IMA J. Numer. Anal.38 (2018) 1599-1660. · Zbl 1459.65179
[8] Barrett, J. W., Langdon, S. and Nürnberg, R., Finite element approximation of a sixth order nonlinear degenerate parabolic equation, Numer. Math.96 (2004) 401-434. · Zbl 1041.65076
[9] Barrett, J. W., Lu, Y. and Süli, E., Existence of large-data finite-energy global weak solutions to a compressible Oldroyd-B model, Commun. Math. Sci.15 (2017) 1265-1323. · Zbl 1390.35007
[10] Barrett, J. W., Nürnberg, R. and Styles, V., Finite element approximation of a phase field model for void electromigration, SIAM J. Numer. Anal.42 (2004) 738-772. · Zbl 1076.78012
[11] Barrett, J. W. and Süli, E., Existence of global weak solutions to some regularized kinetic models for dilute polymers, Multiscale Model. Simul.6 (2007) 506-546. · Zbl 1228.76004
[12] Bartels, S., Numerical Approximation of Partial Differential Equations, , Vol. 64 (Springer, 2016). · Zbl 1353.65089
[13] Braess, D., Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 3rd edn. (Cambridge Univ. Press, 2007). · Zbl 1118.65117
[14] Brenner, S. C. and Scott, L. R., The Mathematical Theory of Finite Element Methods, Vol. 3 (Springer, 2008). · Zbl 1135.65042
[15] Bresch, D., Colin, T., Grenier, E., Ribba, B. and Saut, O., A viscoelastic model for avascular tumor growth, Discrete Contin. Dyn. Syst.2009 (2009) 101-108. · Zbl 1185.92059
[16] Brunk, A., Dünweg, B., Egger, H., Habrich, O., Lukáčová-Medvidová, M. and Spiller, D., Analysis of a viscoelastic phase separation model, J. Phys.: Condens. Matter33 (2021) 234002.
[17] Cahn, J. W. and Hilliard, J. E., Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys.28 (1958) 258-267. · Zbl 1431.35066
[18] Ciarlet, P. G., The Finite Element Method for Elliptic Problems, (Society for Industrial and Applied Mathematics, 2002). · Zbl 0999.65129
[19] Clément, P., Approximation by finite element functions using local regularization, ESAIM: Math. Model. Numer. Anal.9 (1975) 77-84. · Zbl 0368.65008
[20] Dahmen, W. and Reusken, A., Numerik für Ingenieure und Naturwissenschaftler, 2nd edn. (Springer, 2008). · Zbl 1153.65002
[21] Ebenbeck, M. and Garcke, H., Analysis of a Cahn-Hilliard-Brinkman model for tumour growth with chemotaxis, J. Differential Equations266 (2019) 5998-6036. · Zbl 1410.35058
[22] Ebenbeck, M. and Garcke, H., On a Cahn-Hilliard-Brinkman model for tumor growth and its singular limits, SIAM J. Math. Anal.51 (2019) 1868-1912. · Zbl 1420.35116
[23] Ebenbeck, M., Garcke, H. and Nürnberg, R., Cahn-Hilliard-Brinkman systems for tumour growth, Discrete Contin. Dyn. Syst. Ser. S14 (2021) 3989-4033. · Zbl 1480.35411
[24] Ebenbeck, M. and Knopf, P., Optimal medication for tumors modeled by a Cahn-Hilliard-Brinkman equation, Calc. Var. Partial Differential Equations58 (2019) 1-31. · Zbl 1418.35246
[25] Ebenbeck, M. and Knopf, P., Optimal control theory and advanced optimality conditions for a diffuse interface model of tumor growth, ESAIM: COCV26 (2020) 71. · Zbl 1451.35233
[26] Ebenbeck, M. and Lam, K. F., Weak and stationary solutions to a Cahn-Hilliard-Brinkman model with singular potentials and source terms, Adv. Nonlinear Anal.10 (2021) 24-65. · Zbl 1440.35190
[27] Eck, C., Garcke, H. and Knabner, P., Mathematical Modeling (Springer, 2017). · Zbl 1386.00063
[28] Evans, L. C., Partial Differential Equations, 2nd edn. (Amer. Math. Soc., 2010). · Zbl 1194.35001
[29] Garcke, H. and Lam, K. F., Well-posedness of a Cahn-Hilliard system modelling tumour growth with chemotaxis and active transport, Euro. J. Appl. Math.28 (2017) 284316. · Zbl 1375.92011
[30] Garcke, H., Lam, K. F. and Signori, A., Sparse optimal control of a phase field tumor model with mechanical effects, SIAM J. Control Optim.59 (2021) 1555-1580. · Zbl 1461.49060
[31] Garcke, H., Lam, K. F., Sitka, E. and Styles, V., A Cahn-Hilliard-Darcy model for tumour growth with chemotaxis and active transport, Math. Models Methods Appl. Sci.26 (2016) 1095-1148. · Zbl 1336.92038
[32] Garcke, H. and Trautwein, D., Numerical analysis for a Cahn-Hilliard system modelling tumour growth with chemotaxis and active transport, J. Numer. Math.30(4) (2022) 295-324. · Zbl 1527.92002
[33] Giesekus, H., A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility, J. Non-Newtonian Fluid Mech.11 (1982) 69-109. · Zbl 0492.76004
[34] Girault, V. and Raviart, P. A., Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Vol. 5 (Springer Science & Business Media, 2012). · Zbl 0585.65077
[35] Grün, G., On convergent schemes for diffuse interface models for two-phase flow of incompressible fluids with general mass densities, SIAM J. Num. Anal.51 (2013) 3036-3061. · Zbl 1331.35277
[36] Guillén-González, F. M. and Gutiérrez-Santacreu, J. V., A linear mixed finite element scheme for a nematic Ericksen-Leslie liquid crystal model, ESAIM: Math. Model. Numer. Anal.47 (2013) 1433-1464. · Zbl 1290.82031
[37] Hawkins-Daarud, A., van der Zee, K. G. and Oden, J. T., Numerical simulation of a thermodynamically consistent four-species tumor growth model, Int. J. Numer. Methods Biomed. Eng.28 (2012) 3-24. · Zbl 1242.92030
[38] Horgan, C. O. and Saccomandi, G., Constitutive models for compressible nonlinearly elastic materials with limiting chain extensibility, J. Elasticity77 (2004) 123-138. · Zbl 1076.74008
[39] Hu, D. and Lelièvre, T., New entropy estimates for the Oldroyd-B model and related models, Commun. Math. Sci.5 (2007) 909-916. · Zbl 1137.35318
[40] Hu, X., Lin, F. and Liu, C., Equations for Viscoelastic Fluids (Springer International Publishing, 2018), pp. 1045-1073.
[41] Knopf, P. and Signori, A., Existence of weak solutions to multiphase Cahn-Hilliard-Darcy and Cahn-Hilliard-Brinkman models for stratified tumor growth with chemotaxis and general source terms, Comm. Partial Differential Equations47 (2022) 233-278. · Zbl 1484.35148
[42] Lei, Z., Liu, C. and Zhou, Y., Global solutions for incompressible viscoelastic fluids, Arch. Ration. Mech. Anal.188 (2008) 371-398. · Zbl 1138.76017
[43] Lima, E., Oden, J., Hormuth, D., Yankeelov, T. and Almeida, R., Selection, calibration, and validation of models of tumor growth, Math. Models Methods Appl. Sci.26 (2016) 2341-2368. · Zbl 1349.92075
[44] Lin, F. H., Liu, C. and Zhang, P., On hydrodynamics of viscoelastic fluids, Comm. Pure Appl. Math.58 (2005) 1437-1471. · Zbl 1076.76006
[45] Liu, I. S., Method of Lagrange multipliers for exploitation of the entropy principle, Arch. Ration. Mech. Anal.46 (1972) 131-148. · Zbl 0252.76003
[46] Logg, A., Mardal, K. A., Wells, G. N.et al., Automated Solution of Differential Equations by the Finite Element Method (Springer, 2012). · Zbl 1247.65105
[47] Lukáčová-Medvid’ová, M., Mizerová, H., Nečasová, S. and Renardy, M., Global existence result for the generalized Peterlin viscoelastic model, SIAM J. Math. Anal.49 (2017) 2950-2964. · Zbl 1368.76007
[48] Málek, J. and Průša, V., Derivation of Equations for Continuum Mechanics and Thermodynamics of Fluids (Springer International Publishing, 2018), pp. 3-72.
[49] Málek, J., Průša, V., Skřivan, T. and Süli, E., Thermodynamics of viscoelastic rate-type fluids with stress diffusion, Phys. Fluids30 (2018) 023101.
[50] Metzger, S., On convergent schemes for two-phase flow of dilute polymeric solutions, ESAIM: Math. Model. Numer. Anal.52 (2018) 2357-2408. · Zbl 1421.35251
[51] Mokbel, D., Abels, H. and Aland, S., A phase-field model for fluid-structure interaction, J. Comput. Phys.372 (2018) 823-840. · Zbl 1415.74023
[52] Oldroyd, J. G., On the formulation of rheological equations of state, Proc. R. Soc. Lond. A200 (1950) 523-541. · Zbl 1157.76305
[53] Roussos, E., Condeelis, J. and Patsialou, A., Chemotaxis in cancer, Nat. Rev. Cancer11 (2011) 573-587.
[54] Simon, J., Compact sets in the space \(L^p(0,T;B)\), Ann. Mat. Pura Appl.146(4) (1986) 65-96. · Zbl 0629.46031
[55] Temam, R., Navier-Stokes Equations: Theory and Numerical Analysis (AMS/Chelsea Publication, 2001). · Zbl 0981.35001
[56] Yan, H., Ramirez-Guerrero, D., Lowengrub, J. and Wu, M., Stress generation, relaxation and size control in confined tumor growth, PLoS. Comput. Biol.17 (2021) e1009701.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.