×

Optimal control of an Allen-Cahn model for tumor growth through supply of cytotoxic drugs. (English) Zbl 1514.92039

Summary: Our aim in this paper is to study an optimal control problem for a tumor growth model. The state system couples an Allen-Cahn equation and a reaction diffusion equation that models the evolution of tumor in the presence of nutrient supply. Elimination of cancer cells via cytotoxic drug is considered and the concentration of the cytotoxic drug is represented as a control variable.

MSC:

92C50 Medical applications (general)
35K20 Initial-boundary value problems for second-order parabolic equations
35Q93 PDEs in connection with control and optimization
49K20 Optimality conditions for problems involving partial differential equations
49N90 Applications of optimal control and differential games
Full Text: DOI

References:

[1] H. Alsayed, H. Fakih, A. Miranville and A. Wehbe, On an optimal control problem describing lactate production inhibition, Applicable Analysis, (2021), 1-21.
[2] R. Araujo, A history of the study of solid tumour growth: The contribution of mathematical modelling, Bull. Math. Biol., 66, 1039-1091 (2004) · Zbl 1334.92187 · doi:10.1016/j.bulm.2003.11.002
[3] N. N. K. P. K. Bellomo Li Maini, On the foundations of cancer modelling: Selected topics, speculations, and perspectives, Math. Models Methods Appl. Sci., 18, 593-646 (2008) · Zbl 1151.92014 · doi:10.1142/S0218202508002796
[4] H. Byrne, The effect of time delays on the dynamics of avascular tumor growth, Math. Biosci., 144, 83-117 (1997) · Zbl 0904.92023 · doi:10.1016/S0025-5564(97)00023-0
[5] H. Byrne, The role of mathematics in solid tumour growth, Math. Today, (Southend-on-Sea), 35 (1999), 48-53. · Zbl 0948.92010
[6] H. M. Byrne Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors, Mathematical Biosciences, 130, 151-181 (1995) · Zbl 0836.92011 · doi:10.1016/0025-5564(94)00117-3
[7] H. S. Byrne Gourley, The role of growth factors in avascular tumour growth, Math. Comput. Modelling, 26, 35-55 (1997) · Zbl 0898.92018 · doi:10.1016/S0895-7177(97)00143-X
[8] J. W. S. M. Cahn Allen, A microscopic theory for domain wall motion and its experimental verification in fe-al alloy domain growth kinetics, J. Phys. Colloques, 38, 51-54 (1977) · doi:10.1051/jphyscol:1977709
[9] J. W. J. E. Cahn Hilliard, Free energy of a nonuniform system. Ⅰ. interfacial free energy, The Journal of Chemical Physics, 28, 258-267 (1958) · Zbl 1431.35066 · doi:10.1063/1.1744102
[10] C. E. H. Cavaterra Rocca Wu, Long-Time dynamics and optimal control of a diffuse interface model for tumor growth, Appl. Math. Optim, 83, 739-787 (2021) · Zbl 1464.35357 · doi:10.1007/s00245-019-09562-5
[11] R. V. J. Chari, Targeted cancer therapy: Conferring specificity to cytotoxic drugs, Acc. Chem. Res., 41, 98-107 (2008) · doi:10.1021/ar700108g
[12] L. A. S. Cherfils Miranville Zelik, On a generalized Cahn-Hilliard equation with biological applications, Discrete Contin. Dyn. Syst. Ser. B, 19, 2013-2026 (2014) · Zbl 1304.35133 · doi:10.3934/dcdsb.2014.19.2013
[13] P. G. D. Colli Gilardi Hilhorst, On a Cahn-Hilliard type phase field system related to tumor growth, Discrete Contin. Dyn. Syst., 35, 2423-2442 (2015) · Zbl 1342.35407 · doi:10.3934/dcds.2015.35.2423
[14] P. G. E. J. Colli Gilardi Rocca Sprekels, Vanishing viscosities and error estimate for a Cahn-Hilliard type phase field system related to tumor growth, Nonlinear Anal. Real World Appl., 26, 93-108 (2015) · Zbl 1334.35097 · doi:10.1016/j.nonrwa.2015.05.002
[15] P. G. E. J. Colli Gilardi Rocca Sprekels, Optimal distributed control of a diffuse interface model of tumor growth, Nonlinearity, 30, 2518-2546 (2017) · Zbl 1378.35175 · doi:10.1088/1361-6544/aa6e5f
[16] P. G. E. J. Colli Gilardi Rocca Sprekels, Asymptotic analyses and error estimates for a Cahn-Hilliard type phase field system modelling tumor growth, Discrete Contin. Dyn. Syst. Ser. S, 10, 37-54 (2017) · Zbl 1360.35296 · doi:10.3934/dcdss.2017002
[17] P. H. G. G. A. E. Colli Gomez Lorenzo Marinoschi Reali Rocca, Optimal control of cytotoxic and antiangiogenic therapies on prostate cancer growth, Math. Models Methods Appl. Sci., 31, 1419-1468 (2021) · Zbl 1473.92021 · doi:10.1142/S0218202521500299
[18] M. E. E. G. M. E. Dai Feireisl Rocca Schimperna Schonbek, Analysis of a diffuse interface model of multispecies tumor growth, Nonlinearity, 30, 1639-1658 (2017) · Zbl 1367.35185 · doi:10.1088/1361-6544/aa6063
[19] R. Dautray and J. Lions, Analyse Mathématique Et Calcul Numérique Pour Les Sciences Et Les Techniques, Masson, Paris, 1988. · Zbl 0749.35003
[20] T. S. Z. P. V. Deisboeck Wang Macklin Cristini, Multiscale cancer modeling, Annual Review of Biomedical Engineering, 13, 127-155 (2011)
[21] M. Ebenbeck and P. Knopf, Optimal medication for tumors modeled by a Cahn-Hilliard-Brinkman equation, Calc. Var. Partial Differential Equations, 58 (2019), Paper No. 131, 31 pp. · Zbl 1418.35246
[22] M. Ebenbeck and P. Knopf, Optimal control theory and advanced optimality conditions for a diffuse interface model of tumor growth, ESAIM Control Optim. Calc. Var., 26 (2020), Paper No. 71, 38 pp. · Zbl 1451.35233
[23] L. Evans, Partial Differential Equations, \(2^nd\) edition, American Mathematical Society, 2010. · Zbl 1194.35001
[24] H. Fakih, A Cahn-Hilliard equation with a proliferation term for biological and chemical applications, Asymptot. Anal., 94, 71-104 (2015) · Zbl 1444.35093 · doi:10.3233/ASY-151306
[25] H. R. N. Fakih Mghames Nasreddine, On the Cahn-Hilliard equation with mass source for biological applications, Commun. Pure Appl. Anal., 20, 495-510 (2021) · Zbl 1460.35351 · doi:10.3934/cpaa.2020277
[26] S. M. E. Frigeri Grasselli Rocca, On a diffuse interface model of tumour growth, European J. Appl. Math., 26, 215-243 (2015) · Zbl 1375.92031 · doi:10.1017/S0956792514000436
[27] H. K. F. Garcke Lam, Well-posedness of a Cahn-Hilliard system modelling tumour growth with chemotaxis and active transport, European J. Appl. Math., 28, 284-316 (2017) · Zbl 1375.92011 · doi:10.1017/S0956792516000292
[28] H. K. F. E. Garcke Lam Rocca, Optimal control of treatment time in a diffuse interface model of tumor growth, Appl. Math. Optim., 78, 495-544 (2018) · Zbl 1403.35139 · doi:10.1007/s00245-017-9414-4
[29] M. D. Hintermüller Wegner, Distributed optimal control of the Cahn-Hilliard system including the case of a double-obstacle homogeneous free energy density, SIAM J. Control Optim., 50, 388-418 (2012) · Zbl 1250.35131 · doi:10.1137/110824152
[30] J. H. S. Jiang Wu Zheng, Well-posedness and long-time behavior of a non-autonomous Cahn-Hilliard-Darcy system with mass source modeling tumor growth, J. Differential Equations, 259, 3032-3077 (2015) · Zbl 1330.35039 · doi:10.1016/j.jde.2015.04.009
[31] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations (2000) · Zbl 0948.35001
[32] A. Miranville, The Cahn-Hilliard equation with a nonlinear source term, J. Differential Equations, 294, 88-117 (2021) · Zbl 1470.35198 · doi:10.1016/j.jde.2021.05.045
[33] J. T. A. S. Oden Hawkins Prudhomme, General diffuse-interface theories and an approach to predictive tumor growth modeling, Math. Models Methods Appl. Sci., 20, 477-517 (2010) · Zbl 1186.92024 · doi:10.1142/S0218202510004313
[34] E. J. Rocca Sprekels, Optimal distributed control of a nonlocal convective Cahn-Hilliard equation by the velocity in three dimensions, SIAM J. Control Optim., 53, 1654-1680 (2015) · Zbl 1322.49006 · doi:10.1137/140964308
[35] F. Tröltzsch and J. Sprekels, Optimal Control of Partial Differential Equations: Theory, Methods, and Applications, Graduate Studies in Mathematics, 112. American Mathematical Society, Providence, RI, 2010. · Zbl 1195.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.