×

Long time dynamics of a phase-field model of prostate cancer growth with chemotherapy and antiangiogenic therapy effects. (English) Zbl 1496.35394

The authors study a model of prostate cancer growth and chemotherapy, where the critical nutrient controls the advancement of the tumor. It consists of a system of three (coupled) semilinear parabolic equations: an Allen-Cahn-type equation which describes the tumor phase, a reaction-diffusion equation controlling the nutrient properties and an additional reaction-diffusion equation which governs the concentration of prostate-specific antigen in the prostatic tissue. The first equation is accompanied by the homogeneous Dirichlet boundary condition and the other two equations, by the homogeneous Neumann condition. The solution operator associated with the corresponding initial-boundary value problem defines a strongly continuous semigroup on a suitable phase space. The authors show that this semigroup admits a global attractor and then establish a long time behaviour result for the considered initial-boundary value problem.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
92C50 Medical applications (general)
92C37 Cell biology
92C35 Physiological flow
35K58 Semilinear parabolic equations
35K51 Initial-boundary value problems for second-order parabolic systems
35B41 Attractors
37L30 Attractors and their dimensions, Lyapunov exponents for infinite-dimensional dissipative dynamical systems

References:

[1] C. Cavaterra; E. Rocca; H. Wu, Long-time dynamics and optimal control of a diffuse interface model for tumor growth, Applied Mathematics & Optimization, 83, 739-787 (2021) · Zbl 1464.35357 · doi:10.1007/s00245-019-09562-5
[2] P. Colli; H. Gomez; G. Lorenzo; G. Marinoschi; A. Reali; E. Rocca, Mathematical analysis and simulation study of a phase-field model of prostate cancer growth with chemotherapy and antiangiogenic therapy effects, Mathematical Models and Methods in Applied Sciences, 30, 1253-1295 (2020) · Zbl 1444.92040 · doi:10.1142/S0218202520500220
[3] P. Colli; G. Gilardi; G. Marinoschi; E. Rocca, Sliding mode control for a phase field system related to tumor growth, Applied Mathematics & Optimization, 79, 647-670 (2019) · Zbl 1420.35434 · doi:10.1007/s00245-017-9451-z
[4] P. Colli; G. Gilardi; E. Rocca; J. Sprekels, Asymptotic analyses and error estimates for a Cahn-Hilliard type phase field system modelling tumor growth, Discrete & Continuous Dynamical Systems, 10, 37-54 (2017) · Zbl 1360.35296 · doi:10.3934/dcdss.2017002
[5] P. Colli; G. Gilardi; E. Rocca; J. Sprekels., Optimal distributed control of a diffuse interface model of tumor growth, Nonlinearity, 30, 2518-2546 (2017) · Zbl 1378.35175 · doi:10.1088/1361-6544/aa6e5f
[6] P. Colli; G. Gilardi; D. Hilhorst, On a Cahn-Hilliard type phase field system related to tumor growth, Discrete & Continuous Dynamical Systems, 35, 2423-2442 (2015) · Zbl 1342.35407 · doi:10.3934/dcds.2015.35.2423
[7] P. Colli; G. Gilardi; F. Issard-Roch; G. Schimperna, Long time convergence for a class of variational phase-field models, Discrete & Continuous Dynamical Systems, 25, 63-81 (2019) · Zbl 1178.35065 · doi:10.3934/dcds.2009.25.63
[8] M. Dai; E. Feireisl; E. Rocca; G. Schimperna; M. Schonbek, Analysis of a diffuse interface model for multispecies tumor growth, Nonlinearity, 30, 1639-1658 (2017) · Zbl 1367.35185 · doi:10.1088/1361-6544/aa6063
[9] M. Ebenbeck; H. Garcke, Analysis of a Cahn-Hilliard-Brinkman model for tumour growth with chemotaxis, Journal of Differential Equations, 266, 5998-6036 (2019) · Zbl 1410.35058 · doi:10.1016/j.jde.2018.10.045
[10] M. Ebenbeck and P. Knopf, Optimal medication for tumors modeled by a Cahn-Hilliard-Brinkman equation, Calculus of Variations, 58 (2019), Paper No. 131, 31 pp. · Zbl 1418.35246
[11] E. Feireisl; F. Issard-Roch; H. Petzeltova, Long-time behaviour and convergence towards equilibria for a conserved phase field model, Discrete & Continuous Dynamical Systems, 10, 239-252 (2004) · Zbl 1060.35018 · doi:10.3934/dcds.2004.10.239
[12] S. Frigeri; M. Grasselli; E. Rocca, On a diffuse interface model of tumour growth, European Journal of Applied Mathematics, 26, 215-243 (2015) · Zbl 1375.92031 · doi:10.1017/S0956792514000436
[13] H. Garcke; K. F. Lam, Global weak solutions and asymptotic limits of a Cahn-Hilliard-Darcy system modelling tumour growth, AIMS Mathematics, 1, 318-360 (2016) · Zbl 1434.35255 · doi:10.3934/Math.2016.3.318
[14] H. Garcke; K. F. Lam, Analysis of a Cahn-Hilliard system with non zero Dirichlet conditions modelling tumour growth with chemotaxis, Discrete & Continuous Dynamical Systems, 37, 4277-4308 (2017) · Zbl 1360.35042 · doi:10.3934/dcds.2017183
[15] H. Garcke; K. F. Lam; E. Rocca, Optimal control of treatment time in a diffuse interface model of tumor growth, Applied Mathematics & Optimization, 78, 495-544 (2018) · Zbl 1403.35139 · doi:10.1007/s00245-017-9414-4
[16] H. Garcke; K. F. Lam; E. Sitka; V. Styles, A Cahn-Hilliard-Darcy model for tumour growth with chemotaxis and active transport, Mathematical Models and Methods in Applied Sciences, 26, 1095-1148 (2016) · Zbl 1336.92038 · doi:10.1142/S0218202516500263
[17] H. Garcke; K. F. Lam; R. Nürnberg; E. Sitka, A multiphase Cahn-Hilliard-Darcy model for tumour growth with necrosis, Mathematical Models and Methods in Applied Sciences, 28, 525-577 (2018) · Zbl 1380.92029 · doi:10.1142/S0218202518500148
[18] W. Hao; M. Grasselli; S. Zheng, Convergence to equilibrium for a parabolic-hyperbolic phase-field system with Neumann boundary conditions, Mathematical Models and Methods in Applied Sciences, 17, 125-153 (2007) · Zbl 1120.35024 · doi:10.1142/S0218202507001851
[19] J. Jiang; H. Wu; S. Zheng, Well-posedness and long-time behavior of a non-autonomous Cahn-Hilliard-Darcy system with mass source modeling tumor growth, Journal of Differential Equations, 259, 3032-3077 (2015) · Zbl 1330.35039 · doi:10.1016/j.jde.2015.04.009
[20] P. Laurençot, Long-time behaviour for a model of phase-field type, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 126, 167-185 (1996) · Zbl 0851.35055 · doi:10.1017/S0308210500030663
[21] G. Lorenzo, M. A. Scott, K. Tew, T. J. R. Hughes, Y. J. Zhang, L. Liu, G. Vilanova and H. Gomez, Tissue-scale, personalized modeling and simulation of prostate cancer growth, Proceedings of the National Academy of Sciences of the United States of America, 113 (2016), E7663-E7671.
[22] J. S. Lowengrub, E. Titi and K. Zhao, Analysis of a mixture model of tumor growth, European Journal of Applied Mathematics, 24 (2013) 691-734. · Zbl 1292.35153
[23] A. Miranville; E. Rocca; G. Schimperna, On the long time behavior of a tumor growth model, Journal of Differential Equations, 267, 2616-2642 (2019) · Zbl 1416.35279 · doi:10.1016/j.jde.2019.03.028
[24] E. Rocca; G. Schimperna, Universal attractor for some singular phase transition systems, Physica D: Nonlinear Phenomena, 192, 279-307 (2004) · Zbl 1062.82015 · doi:10.1016/j.physd.2004.01.024
[25] A. Sergiu; E. Feireisl; F. Issard-Roch, Long-time convergence of solutions to a phase-field system, Mathematical methods in the applied sciences, 24, 277-287 (2001) · Zbl 0984.35026 · doi:10.1002/mma.215
[26] R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988. · Zbl 0662.35001
[27] J. Xu, G. Vilanova and H. Gomez, A mathematical model coupling tumor growth and angiogenesis, PLoS ONE, 11 (2016), e0149422.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.