×

Variational analysis of convexly generated spectral max functions. (English) Zbl 1386.15038

Let \(\overline{\mathbb R}:= \mathbb R \cup \{\infty\}\) denote the set of the extended real numbers. Given a function \(f:\mathbb C \rightarrow \overline{\mathbb R}\), the spectral max function \(\mathsf{f}:\mathbb C^{n\times n} \rightarrow \overline{\mathbb R}\) generated by \(f\) is \[ \mathsf{f}(X):=\max\{f(\lambda)\mid \lambda \in \mathbb C \;\text{and} \;\det(\lambda I - X) = 0\}. \]
Two important spectral max functions are the spectral abscissa and spectral radius which are generated by \(f(\cdot) = \operatorname{Re}(\cdot)\) and \(f(\cdot) = |\cdot|\) respectively. Let \(\mathbb{P}^n\) denote the set of complex polynomials with degree equal or less than \(n\). The polynomial root max function generated by \(f\) is the mapping \(\mathbf{f}:\mathbb{P}^n \rightarrow \overline{\mathbb R}\) defined by \[ \mathbf{f}(p):=\max\{f(\lambda)\mid \lambda \in \mathbb C \;\text{and} \;p(\lambda) = 0\}. \] We say \(\mathbf{f}\) is convexly generated if \(f\) is proper, convex, and lsc.
In [Found. Comput. Math. 1, No. 2, 205–225 (2001; Zbl 0994.15022)], J. V. Burke et al. characterized the regular subdifferential of the spectral abscissa and showed that the spectral abscissa is subdifferentially regular if all active eigenvalues are nonderogatory. In this paper, the authors extend the Burke-Overton variational analysis results for the spectral abscissa mapping to the class of convexly spectral max functions. It was also shown that subdifferential regularity occurs if and only if all active eigenvalues are nonderogatory.
Two different approaches are applied. The first approach uses the Arnold form [V. I. Arnol’d, Russ. Math. Surv. 26, No. 2, 29–43 (1972; Zbl 0259.15011); translation from Usp. Mat. Nauk 26, No. 2(158), 101–114 (1971)] to derive a representation for the subdifferential and establish the subdifferential regularity of convexly generated spectral max functions at matrices with nonderogatory active eigenvalues. The second approach uses the underlying matrix structures to characterize the regular subgradients of convexly generated spectral max functions without assuming nonderogatory active eigenvalues.

MSC:

15A42 Inequalities involving eigenvalues and eigenvectors
34D05 Asymptotic properties of solutions to ordinary differential equations
49J52 Nonsmooth analysis
49K99 Optimality conditions
90C26 Nonconvex programming, global optimization

References:

[1] Arnold, V.I.: On matrices depending on parameters. Russ. Math. Surv. 26(2), 29-43 (1971) · Zbl 0259.15011 · doi:10.1070/RM1971v026n02ABEH003827
[2] Burke, J.V., Eaton, J.: On the subdifferential regularity of max root functions for polynomials. Nonlinear Anal. Theory Methods Appl. 75(3), 1168-1187 (2012) · Zbl 1236.49078 · doi:10.1016/j.na.2011.01.021
[3] Burke, J.V., Eaton, J.: Variational analysis of convexly generated spectral max functions. ArXiv e-prints (2015) · Zbl 1386.15038
[4] Burke, J.V., Henrion, D., Lewis, A.S., Overton, M.L.: Stabilization via nonsmooth, nonconvex optimization. IEEE Trans. Autom. Control 51(11), 1760-1769 (2006) · Zbl 1366.93490 · doi:10.1109/TAC.2006.884944
[5] Burke, J.V., Lewis, A.S., Overton, M.L.: Optimizing matrix stability. Proc. Am. Math. Soc. 129(6), 1635-1642 (2000) · Zbl 0965.15020 · doi:10.1090/S0002-9939-00-05985-2
[6] Burke, J.V., Lewis, A.S., Overton, M.L.: Optimal stability and eigenvalue multiplicity. Found. Comput. Math. 1(2), 205-225 (2001) · Zbl 0994.15022 · doi:10.1007/PL00021726
[7] Burke, J.V., Lewis, A.S., Overton, M.L.: Two numerical methods for optimizing matrix stability. Linear Algebra Appl. 351-352, 117-145 (2002) · Zbl 1005.65041 · doi:10.1016/S0024-3795(02)00260-4
[8] Burke, J.V., Lewis, A.S., Overton, M.L.: Robust stability and a criss-cross algorithm for pseudospectra. IMA J. Numer. Anal. 23, 359-375 (2003) · Zbl 1042.65060 · doi:10.1093/imanum/23.3.359
[9] Burke, J.V., Lewis, A.S., Overton, M.L.: Variational analysis of the abscissa mapping for polynomials via the Gauss-Lucas Theorem. J. Glob. Optim. 28(3), 259-268 (2004) · Zbl 1134.49309 · doi:10.1023/B:JOGO.0000026448.63457.51
[10] Burke, J.V., Lewis, A.S., Overton, M.L.: Variational analysis of functions of the roots of polynomials. Math. Program. Ser. B 104(2), 263-292 (2005) · Zbl 1093.90078 · doi:10.1007/s10107-005-0616-1
[11] Burke, J.V., Overton, M.L.: Differential properties of the spectral abscissa and the spectral radius for analytic matrix-valued mappings. Nonlinear Anal. Theory Methods Appl. 23(4), 467-488 (1994) · Zbl 0815.47007 · doi:10.1016/0362-546X(94)90090-6
[12] Burke, J.V., Overton, M.L.: Variational analysis of non-Lipschitz spectral functions. Math. Program. Ser. A 90(2), 317-351 (2001) · Zbl 0988.15005 · doi:10.1007/PL00021726
[13] Burke, J.V., Overton, M.L.: Variational analysis of the abscissa mapping for polynomials. SIAM J. Control Optim. 39(6), 1651-1676 (2001) · Zbl 0997.49015 · doi:10.1137/S0363012900367655
[14] Clarke, F.H.: Optim. Nonsmooth Anal. Republished by SIAM, Philadelphia (1990) · doi:10.1137/1.9781611971309
[15] Grundel, S., Overton, M.L.: Variational analysis of the spectral abscissa at a matrix with a nongeneric multiple eigenvalue. Set-Valued Var. Anal. 22(1), 19-43 (2014) · Zbl 1301.49037 · doi:10.1007/s11228-013-0234-7
[16] Lax, P.D.: Linear Algebra. Wiley, New York (1997) · Zbl 0904.15001
[17] Lewis, A.S.: Nonsmooth analysis of eigenvalues. Math. Program. Ser. A 54(1), 1-24 (1999) · Zbl 0969.49006 · doi:10.1007/s10107980004a
[18] Lewis, A.S.: The mathematics of eigenvalue optimization. Math. Program. Ser. B 97(1), 155-176 (2003) · Zbl 1035.90085 · doi:10.1007/s10107-003-0441-3
[19] Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, vol. 1. Springer, New York (2005) · Zbl 1100.49002
[20] Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (1998) · Zbl 0888.49001 · doi:10.1007/978-3-642-02431-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.