×

Benchmark of the KGMf with a coupled Boltzmann equation solver. (English) Zbl 07690101

Summary: The Kinetic Global Model framework (KGMf) is an open-source general-purpose global model (spatially averaged) simulation code developed to explore the reaction kinetics and pathways in plasma discharge systems. It contains species continuity and electron energy balance equations, with a time-dependent evaluated electron energy distribution function (EEDF) for electron impact reactions. The EEDF is utilized to determine the rate coefficients for electron impact reactions, which can have profound impact on the temporal evolutions of plasma parameters. Previously, the EEDF was commonly assumed as Maxwellian or an analytical function of the effective electron temperature. In this work, the KGMf is coupled with a Boltzmann equation (BE) solver to self-consistently compute the EEDF. The EEDF evolution frequency is determined based on relative changes of the reduced electric field. The KGMf is benchmarked with the ZDPlasKin code based on high-pressure low-temperature argon plasma discharge cases. The temporal evolutions of reduced electric field, electron temperature, EEDF, reaction rates, and species densities, are obtained and compared under different discharge conditions, showing good agreement between the KGMf and the ZDPlasKin simulations. The application of the KGMf for predicting breakdown times in high power microwave discharges is also presented, which shows qualitative agreement with particle-in-cell simulations. The KGMf can be further applied for more complicated plasma discharge systems, where the reaction kinetics are more intricate (e.g., plasma-assisted combustion systems).

MSC:

80-XX Classical thermodynamics, heat transfer
82-XX Statistical mechanics, structure of matter

Software:

COMSOL; Magboltz
Full Text: DOI

References:

[1] Adamovich, I. V.; Baalrud, S. D.; Bogaerts, A.; Bruggeman, P. J.; Cappelli, M.; Colombo, V.; Czarnetzki, U.; Ebert, U.; Eden, J. G.; Favia, P.; Graves, D. B.; Hamaguchi, S.; Hieftje, G.; Hori, M.; Kaganovich, I. D.; Kortshagen, U.; Kushner, M. J.; Mason, N. J.; Mazouffre, S.; Mededovic Thagard, S.; Metelmann, H.-K.; Mizuno, A.; Moreau, E.; Murphy, A. B.; Niemira, B. A.; Oehrlein, G. S.; Petrovic, Z. L.; Pitchford, L. C.; Pu, Y.-K.; Rauf, S.; Sakai, O.; Samukawa, S.; Starikovskaia, S.; Tennyson, J.; Terashima, K.; Turner, M. M.; van de Sanden, M. C.M.; Vardelle, A., J. Phys. D: Appl. Phys., 50, 32, Article 323001 pp. (2017)
[2] Von Woedtke, T.; Metelmann, H. R.; Weltmann, K. D., Contrib. Plasma Phys., 54, 2, 104-117 (2014)
[3] Alves, L. L.; Bogaerts, A.; Guerra, V.; Turner, M. M., Plasma Sources. Sci. Technol., 27, 2, Article 023002 pp. (2018)
[4] Adamovich, I. V.; Li, T.; Lempert, W. R., Phil. Trans. R. Soc. A, 373, 2048, Article 20140336 pp. (2015)
[5] Yang, S.; Gao, X.; Yang, V.; Sun, W.; Nagaraja, S.; Lefkowitz, J. K.; Ju, Y., J. Propul. Power, 32, 1240-1252 (2016)
[6] Kushner, M. J., J. Appl. Phys., 53, 4, 2923-2938 (1982)
[7] Laroussi, M., Plasma Process. Polym., 2, 5, 391-400 (2005)
[8] Laroussi, M., IEEE Trans. Plasma Sci., 37, 6, 714-725 (2009)
[9] Kushner, M. J., J. Phys. D: Appl. Phys., 42, 19, Article 194013 pp. (2009)
[10] Ding, K.; Lieberman, M. A., J. Phys. D: Appl. Phys., 48, 3, Article 035401 pp. (2014)
[11] Eckert, Z.; Tsolas, N.; Togai, K.; Chernukho, A.; Yetter, R. A.; Adamovich, I. V., J. Phys. D: Appl. Phys., 51, 37, Article 374002 pp. (2018)
[12] Nam, S. K.; Verboncoeur, J. P., Appl. Phys. Lett., 92, 23, Article 231502 pp. (2008)
[13] Nam, S. K.; Verboncoeur, J. P., Appl. Phys. Lett., 93, 15, Article 151504 pp. (2008)
[14] G.M. Parsey, Y. GüΩ CÇclü, J.P. Verboncoeur, A. Christlieb, in: The 40th IEEE International Conference on Plasma Science, ICOPS, San Francisco, California, USA, Jun 16-21, 2013, http://dx.doi.org/10.1109/PLASMA.2013.6634762.
[15] Fu, Y.; Parsey, G. M.; Verboncoeur, J. P.; Christlieb, A. J., Phys. Plasmas, 24, 11, Article 113518 pp. (2017)
[16] Fu, Y.; Krek, J.; Parsey, G. M.; Verboncoeur, J. P., Phys. Plasmas, 25, 3, Article 033505 pp. (2018)
[17] Nam, S. K.; Verboncoeur, J. P., Comput. Phys. Comm., 180, 4, 628-635 (2009)
[18] Comsol, S. K., Comsol multiphysics modeling software (2019), https://www.comsol.com. (Accessed 20 June 2019)
[19] Dorai, R.; Hassouni, K.; Kushner, M. J., J. Appl. Phys., 88, 10, 6060-6071 (2000)
[20] Pancheshnyi, S.; Eismann, B.; Hagelaar, G. J.M.; Pitchford, L. C., Computer Code ZDPlasKin (2008), University of Toulouse, LAPLACE, CNRS-UPS-INP: University of Toulouse, LAPLACE, CNRS-UPS-INP Toulouse, France, https://www.zdplaskin.laplace.univ-tlse.fr
[21] Markosyan, A. H.; Luque, A.; Gordillo-Vázquez, F. J.; Ebert, U., Comput. Phys. Comm., 185, 10, 2697-2702 (2014)
[22] G.M. Parsey, Y. Güçlü, J. Krek, Kinetic Global Model framework (KGMf), http://ptsg.egr.msu.edu/KGMf/.
[23] Pitchford, L. C.; ONeil, S. V.; Rumble, J. R., Phys. Rev. A, 23, 1, 294 (1981)
[24] Pitchford, L. C.; Alves, L. L.; Bartschat, K.; Biagi, S. F.; Bordage, M. C.; Phelps, A. V.; Ferreira, C. M.; Hagelaar, G. J.M.; Morgan, W. L.; Pancheshnyi, S.; Puech, V.; Stauffer, A.; Zatsarinny, O., J. Phys. D: Appl. Phys., 46, 33, Article 334001 pp. (2013)
[25] Alves, L. L.; Bartschat, K.; Biagi, S. F.; Bordage, M. C.; Pitchford, L. C.; Ferreira, C. M.; Hagelaar, G. J.M.; Morgan, W. L.; Pancheshnyi, S.; Phelps, A. V.; Puech, V.; Zatsarinny, O., J. Phys. D: Appl. Phys., 46, 33, Article 334002 pp. (2013)
[26] Bordage, M. C.; Biagi, S. F.; Alves, L. L.; Bartschat, K.; Chowdhury, S.; Pitchford, L. C.; Hagelaar, G. J.M.; Morgan, W. L.; Puech, V.; Zatsarinny, O., J. Phys. D: Appl. Phys., 46, 33, Article 334003 pp. (2013)
[27] Bretagne, J.; Callede, G.; Legentil, M.; Puech, V., J. Phys. D: Appl. Phys., 19, 5, 761 (1986)
[28] Zhao, P.-C.; Liao, C.; Yang, D.; Zhong, X.-M., Chin. Phys. B, 23, 5, Article 055101 pp. (2014)
[29] Petrova, T. B.; Ladouceur, H. D.; Baronavski, A. P., Phys. Plasmas, 15, 5, Article 053501 pp. (2008)
[30] Sun, B.; Liu, D.; Yang, A.; Rong, M.; Wang, X., Phys. Plasmas, 26, 12, Article 123508 pp. (2019), arXiv:https://doi.org/10.1063/1.5124023
[31] Gudmundsson, J. T., Plasma Sources. Sci. Technol., 10, 1, 76 (2001)
[32] Birdsall, C. K.; Langdon, A. B., Plasma Physics Via Computer Simulation (2018), CRC Press
[33] Hockney, R. W.; Eastwood, J. W., Computer Simulation using Particles (1988), CRC Press · Zbl 0662.76002
[34] Vahedi, V.; Surendra, M., Comput. Phys. Comm., 87, 1-2, 179-198 (1995)
[35] Kushner, M. J., J. Appl. Phys., 54, 9, 4958-4965 (1983)
[36] Biagi, S. F., Nucl. Instrum. Methods Phys. Res. A, 421, 1-2, 234-240 (1999)
[37] Renda, M.; Ciubotaru, D. A., Betaboltz: A Monte-Carlo simulation tool for gas scattering processes (2019), arXiv preprint arXiv:1901.08140
[38] Rabie, M.; Franck, C. M., Comput. Phys. Comm., 203, 268-277 (2016)
[39] Morgan, W. L.; Penetrante, B. M., Comput. Phys. Comm., 58, 1-2, 127-152 (1990)
[40] Biagi, S. F., Magboltz-transport of electrons in gas mixtures (2000), http://magboltz.web.cern.ch/magboltz/
[41] Hagelaar, G. J.M., BOLSIG \(+ (2018)\), https://www.bolsig.laplace.univ-tlse.fr. (Accessed 31 August 2018)
[42] Luque, A., BOLOS (2014), https://pypi.python.org/pypi/bolos. (Accessed 31 March 2017)
[43] Tejero-del Caz, A.; Guerra, V.; Gonçalves, D.; da Silva, M. L.; Marques, L.; Pinhao, N.; Pintassilgo, C. D.; Alves, L. L., Plasma Sources. Sci. Technol., 28, 4, Article 043001 pp. (2019)
[44] Stephens, J., J. Phys. D: Appl. Phys., 51, 12, Article 125203 pp. (2018)
[45] Lin, S. L.; Robson, R. E.; Mason, E. A., J. Chem. Phys., 71, 8, 3483-3498 (1979)
[46] Robson, R. E.; Ness, K. F., Phys. Rev. A, 33, 3, 2068 (1986)
[47] White, R. D.; Robson, R. E.; Schmidt, B.; Morrison, M. A., J. Phys. D: Appl. Phys., 36, 24, 3125 (2003)
[48] J. Krek, Y. Fu, J.P. Verboncoeur, Benchmarking the Kinetic Global Model framework (KGMf): EEDF evaluations in low-temperature argon plasmas, in: The 46th Pulsed Power & Plasma Science, PPPS, Orlando, Florida, USA, June 22-28, 2019.
[49] Hagelaar, G. J.M.; Pitchford, L. C., Plasma Sources. Sci. Technol., 14, 4, 722 (2005)
[50] Phelps, A. V.; Pitchford, L. C., Phys. Rev. A, 31, 5, 2932 (1985)
[51] LXCat, A. V., Plasma data exchange project (2019), http://www.lxcat.net/. (Accessed 20 June 2019)
[52] Parsey, G. M., A Global Modeling Framework for Plasma Kinetics: development and Applications (2017), Michigan State University, (Ph.D. thesis)
[53] Biagi database, v8.9, http://www.lxcat.net/ retrieved: July 2012,.
[54] Lieberman, M. A.; Lichtenberg, A. J., Principles of Plasma Discharges and Materials Processing (2005), John Wiley & Sons
[55] Raizer, Y. P.; Kisin, V. I.; Allen, J. E., Gas Discharge Physics (2011), Springer Berlin Heidelberg
[56] Baars-Hibbe, L.; Sichler, P.; Schrader, C.; Gericke, K.-H.; Büttgenbach, S., Plasma Process. Polym., 2, 3, 174 (2005)
[57] Fu, Y.; Zhang, P.; Verboncoeur, J. P., Appl. Phys. Lett., 112, 25, Article 254102 pp. (2018)
[58] Fu, Y.; Zhang, P.; Krek, J.; Verboncoeur, J. P., Appl. Phys. Lett., 114, 1, Article 014102 pp. (2019)
[59] Lau, Y. Y.; Verboncoeur, J. P.; Kim, H. C., Appl. Phys. Lett., 89, 26, Article 261501 pp. (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.