×

A new guiding centre PIC scheme for electromagnetic highly magnetized plasma simulation. (English) Zbl 0997.81619

Summary: A new implicit fully electromagnetic particle in cell (PIC) method is presented in which the full ion dynamic and all the electron guiding centre drifts of a highly magnetized plasma are retained. We show that the electron drifts do not have to be described explicitly, and that they can be simulated using a simple but efficient linear direct implicit method. Tests and simulations using the new scheme are presented.

MSC:

81V70 Many-body theory; quantum Hall effect
81-04 Software, source code, etc. for problems pertaining to quantum theory
83-04 Software, source code, etc. for problems pertaining to relativity and gravitational theory
Full Text: DOI

References:

[1] Hewett, D.; Langdon, B., Electromagnetic direct implicit plasma simulation, J. Comput. Phys., 72, 121 (1987) · Zbl 0636.76126
[2] Tanaka, M., Macroscale implicit electromagnetic particle simulation of magnetized plasmas, J. Comput. Phys., 79, 209 (1988) · Zbl 0651.76051
[3] Tanaka, M., The macro-EM particle simulation method and a study of collisionless magnetic reconnection, Comput. Phys. Commun., 87, 117-138 (1995) · Zbl 0923.76196
[4] Langdon, B.; Cohen, B.; Friedman, A., Direct implicit large time-step particle simulations of plasmas, J. Comput. Phys., 51, 107 (1983) · Zbl 0572.76123
[5] Cohen, I. B.; Freis, R. P.; Thomas, V., Orbit-averaged implicit particle codes, J. Comput. Phys., 45, 345 (1982) · Zbl 0478.65072
[6] Cohen, I. B.; Freis, R. P., Stability and application of an orbit-averaged magneto-inductive particle code, J. Comput. Phys., 45, 367 (1982) · Zbl 0478.65073
[7] Hewett, D., Low-frequency electromagnetic (Darwin) applications in plasma simulation, Comput. Phys. Commun., 84, 243-277 (1994) · Zbl 0876.76088
[8] Gibbons, M. R.; Hewett, D. W., The Darwin direct implicit particle-in-cell (DADIPIC) method for simulation of low frequency plasma phenomena, J. Comput. Phys., 120, 231-247 (1995) · Zbl 0841.76066
[9] Gibbons, M. R.; Hewett, D. W., Characterization of the Drawin direct implicit particle-in-cell method and resulting guidelines for operation, J. Comput. Phys., 130, 54-66 (1997) · Zbl 0870.76056
[10] Northrop, T., The Adiabatic Motion of Charged Particles (1963), Interscience: Interscience New York · Zbl 0119.43703
[11] Birsdall, C. K.; Langdon, B., Plasma Physics via Computer Simulation (1985), McGraw-Hill: McGraw-Hill New York
[12] Hockney, R. H.; Eastwood, J. W., Computer Simulations Using Particles (1988), Adam Hilger: Adam Hilger New York · Zbl 0662.76002
[13] Concus, P.; Golub, G. H., SIAM J. Numer. Anal., 10, 1103 (1973) · Zbl 0245.65043
[14] Hamlin, D. A.; Karplus, R.; Vik, R. C.; Watson, K. M., Mirror and azimuthal drift frequencies for geomagnetically trapped particles, J. Geophys. Res., 66, 1-4 (1961)
[15] Belmont, G.; Mazelle, C., Polytropic indices in collisionless plasmas: theory and measurements, J. Geophys. Res., 97, 8327 (1992)
[16] Rönnmark, K., Computation of the dielectric tensor of a Maxwellian plasma, Plasma Phys., 25, 669 (1983)
[17] Mottez, F.; Chanteur, G., Nonlinear bidimensional evolution of ion beam driven electrostatic instabilities in the auroral region, J. Geophys. Res., 96, 141-147 (1991)
[18] Mottez, F.; Chanteur, G.; Roux, A., Filamentation of plasma in the auroral region by an ion-ion instability: A process for the formation of bidimensional potential structures, J. Geophys. Res., 97, 801-810 (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.