×

Anisotropic halo assembly bias and redshift-space distortions. (English) Zbl 1515.85019


MSC:

85A15 Galactic and stellar structure

References:

[1] J.R. Bond, L. Kofman and D. Pogosyan, 1996 How filaments are woven into the cosmic web, https://doi.org/10.1038/380603a0 Nature380 603 [astro-ph/9512141] · doi:10.1038/380603a0
[2] N. Kaiser, 1984 On the spatial correlations of Abell clusters, https://doi.org/10.1086/184341 Astrophys. J.284 L9 · doi:10.1086/184341
[3] R.H. Wechsler and J.L. Tinker, 2018 The connection between galaxies and their dark matter halos, https://doi.org/10.1146/annurev-astro-081817-051756 Ann. Rev. Astron. Astrophys.56 435 [1804.03097] · doi:10.1146/annurev-astro-081817-051756
[4] V. Desjacques, D. Jeong and F. Schmidt, 2018 Large-scale galaxy bias, https://doi.org/10.1016/j.physrep.2017.12.002 Phys. Rept.733 1 [1611.09787] · Zbl 1392.83093 · doi:10.1016/j.physrep.2017.12.002
[5] W.H. Press and P. Schechter, 1974 Formation of galaxies and clusters of galaxies by selfsimilar gravitational condensation, https://doi.org/10.1086/152650 Astrophys. J.187 425 · doi:10.1086/152650
[6] J.R. Bond, S. Cole, G. Efstathiou and N. Kaiser, 1991 Excursion set mass functions for hierarchical Gaussian fluctuations, https://doi.org/10.1086/170520 Astrophys. J.379 440 · doi:10.1086/170520
[7] H.J. Mo and S.D.M. White, 1996 An Analytic model for the spatial clustering of dark matter halos, https://doi.org/10.1093/mnras/282.2.347 Mon. Not. Roy. Astron. Soc.282 347 [astro-ph/9512127] · doi:10.1093/mnras/282.2.347
[8] A. Faltenbacher and S.D.M. White, 2010 Assembly bias and the dynamical structure of dark matter halos, https://doi.org/10.1088/0004-637X/708/1/469 Astrophys. J.708 469 [0909.4302] · doi:10.1088/0004-637X/708/1/469
[9] O. Hahn, C. Porciani, C.M. Carollo and A. Dekel, 2007 Properties of dark matter haloes in clusters, filaments, sheets and voids, https://doi.org/10.1111/j.1365-2966.2006.11318.x Mon. Not. Roy. Astron. Soc.375 489 [astro-ph/0610280] · doi:10.1111/j.1365-2966.2006.11318.x
[10] T. Lazeyras, M. Musso and F. Schmidt, 2017 Large-scale assembly bias of dark matter halos J. Cosmol. Astropart. Phys.2017 03 059 [1612.04360]
[11] Y.-Y. Mao, A.R. Zentner and R.H. Wechsler, 2018 Beyond assembly bias: exploring secondary halo biases for cluster-size haloes, https://doi.org/10.1093/mnras/stx3111 Mon. Not. Roy. Astron. Soc.474 5143 [Erratum ibid 481 (2018) 3167] [1705.03888] · doi:10.1093/mnras/stx3111
[12] L. Gao, V. Springel and S.D.M. White, 2005 The age dependence of halo clustering, https://doi.org/10.1111/j.1745-3933.2005.00084.x Mon. Not. Roy. Astron. Soc.363 L66 [astro-ph/0506510] · doi:10.1111/j.1745-3933.2005.00084.x
[13] L. Gao and S.D.M. White, 2007 Assembly bias in the clustering of dark matter haloes, https://doi.org/10.1111/j.1745-3933.2007.00292.x Mon. Not. Roy. Astron. Soc.377 L5 [astro-ph/0611921] · doi:10.1111/j.1745-3933.2007.00292.x
[14] N. Dalal, M. White, J.R. Bond and A. Shirokov, 2008 Halo assembly bias in hierarchical structure formation, https://doi.org/10.1086/591512 Astrophys. J.687 12 [0803.3453] · doi:10.1086/591512
[15] O. Hahn, C. Porciani, A. Dekel and C.M. Carollo, 2009 Tidal effects and the environment dependence of halo assembly, Mon. Not. Roy. Astron. Soc.398 1742 [0803.4211] · doi:10.1111/j.1365-2966.2009.15271.x
[16] T. Sunayama and S. More, On the measurements of assembly bias and splashback radius using optically selected galaxy clusters, [1905.07557]
[17] Y.-T. Lin et al., 2016 On detecting halo assembly bias with galaxy populations, https://doi.org/10.3847/0004-637X/819/2/119 Astrophys. J.819 119 [1504.07632] · doi:10.3847/0004-637X/819/2/119
[18] A. Paranjape, O. Hahn and R.K. Sheth, 2018 The dependence of galaxy clustering on tidal environment in the Sloan Digital Sky Survey, https://doi.org/10.1093/mnras/sty633 Mon. Not. Roy. Astron. Soc.476 5442 [1801.04568] · doi:10.1093/mnras/sty633
[19] A.D. Montero-Dorta et al., 2017 The dependence of galaxy clustering on stellar-mass assembly history for LRGs, https://doi.org/10.3847/2041-8213/aa8cc5 Astrophys. J.848 L2 [1705.00013] · doi:10.3847/2041-8213/aa8cc5
[20] D. Martens, C.M. Hirata, A.J. Ross and X. Fang, 2018 A radial measurement of the galaxy tidal alignment magnitude with BOSS data, https://doi.org/10.1093/mnras/sty1100 Mon. Not. Roy. Astron. Soc.478 711 [1802.07708] · doi:10.1093/mnras/sty1100
[21] P. Mansfield and A.V. Kravtsov, The three causes of low-mass assembly bias, [1902.00030]
[22] S. Ramakrishnan, A. Paranjape, O. Hahn and R.K. Sheth, Cosmic web anisotropy is the primary indicator of halo assembly bias, [1903.02007]
[23] N. Kaiser, 1987 Clustering in real space and in redshift space, Mon. Not. Roy. Astron. Soc.227 1 · doi:10.1093/mnras/227.1.1
[24] U. Seljak, 2012 Bias, redshift space distortions and primordial nonGaussianity of nonlinear transformations: application to Lyman α forest J. Cosmol. Astropart. Phys.2012 03 004 [1201.0594]
[25] C.-H. Chuang et al., 2017 Linear redshift space distortions for cosmic voids based on galaxies in redshift space, https://doi.org/10.1103/PhysRevD.95.063528 Phys. Rev. D 95 063528 [1605.05352] · doi:10.1103/PhysRevD.95.063528
[26] C.M. Hirata, 2009 Tidal alignments as a contaminant of redshift space distortions, Mon. Not. Roy. Astron. Soc.399 1074 [0903.4929] · doi:10.1111/j.1365-2966.2009.15353.x
[27] V. Desjacques, D. Jeong and F. Schmidt, 2018 The galaxy power spectrum and bispectrum in redshift space J. Cosmol. Astropart. Phys.2018 12 035 [1806.04015] · Zbl 1536.83163
[28] N. Padilla et al., 2019 The Effect of assembly bias on redshift space distortions, https://doi.org/10.1093/mnras/stz824 Mon. Not. Roy. Astron. Soc.486 582 [1809.06424] · doi:10.1093/mnras/stz824
[29] K.S. McCarthy, Z. Zheng and H. Guo, 2019 The effects of galaxy assembly bias on the inference of growth rate from redshift-space distortions, https://doi.org/10.1093/mnras/stz1461 Mon. Not. Roy. Astron. Soc.487 2424 [1810.05183] · doi:10.1093/mnras/stz1461
[30] F. Villaescusa-Navarro et al., The Quijote simulations, [1909.05273]
[31] V. Springel, 2005 The cosmological simulation code GADGET-2, https://doi.org/10.1111/j.1365-2966.2005.09655.x Mon. Not. Roy. Astron. Soc.364 1105 [astro-ph/0505010] · doi:10.1111/j.1365-2966.2005.09655.x
[32] Planck collaboration, 2016 Planck 2015 results. XIII. Cosmological parameters, https://doi.org/10.1051/0004-6361/201525830 Astron. Astrophys.594 A13 [1502.01589] · doi:10.1051/0004-6361/201525830
[33] M. Davis, G. Efstathiou, C.S. Frenk and S.D.M. White, 1985 The evolution of large scale structure in a universe dominated by cold dark matter, https://doi.org/10.1086/163168 Astrophys. J.292 371 · doi:10.1086/163168
[34] C.M. Hirata and U. Seljak, 2004 Intrinsic alignment-lensing interference as a contaminant of cosmic shear, https://doi.org/10.1103/PhysRevD.82.049901 Phys. Rev. D 70 063526 [Erratum ibid D 82 (2010) 049901] [astro-ph/0406275] · doi:10.1103/PhysRevD.82.049901
[35] R.W. Hockney and J.W. Eastwood, 1988 Computer simulation using particles, CRC press, U.S.A. · Zbl 0662.76002 · doi:10.1887/0852743920
[36] T. Ishiyama et al., 2015 The \(ν^2\) GC simulations: quantifying the dark side of the universe in the Planck cosmology, https://doi.org/10.1093/pasj/psv021 Publ. Astron. Soc. Jap.67 61 [1412.2860] · doi:10.1093/pasj/psv021
[37] P.S. Behroozi, R.H. Wechsler and H.-Y. Wu, 2013 The rockstar phase-space temporal halo finder and the velocity offsets of cluster cores, https://doi.org/10.1088/0004-637X/762/2/109 Astrophys. J.762 109 [1110.4372] · doi:10.1088/0004-637X/762/2/109
[38] C.M. Hirata et al., 2007 Intrinsic galaxy alignments from the 2SLAQ and SDSS surveys: luminosity and redshift scalings and implications for weak lensing surveys, https://doi.org/10.1111/j.1365-2966.2007.12312.x Mon. Not. Roy. Astron. Soc.381 1197 [astro-ph/0701671] · doi:10.1111/j.1365-2966.2007.12312.x
[39] J.R. Bond and S.T. Myers, 1996 The hierarchical peak patch picture of cosmic catalogs. 1. Algorithms, https://doi.org/10.1086/192267 Astrophys. J. Suppl.103 1 · doi:10.1086/192267
[40] Y. Lithwick and N. Dalal, 2011 Self-similar solutions of triaxial dark matter halos, https://doi.org/10.1088/0004-637X/734/2/100 Astrophys. J.734 100 [1010.3723] · doi:10.1088/0004-637X/734/2/100
[41] A.V. Maccio’ et al., 2007 Concentration, spin and shape of dark matter haloes: scatter and the dependence on mass and environment, https://doi.org/10.1111/j.1365-2966.2007.11720.x Mon. Not. Roy. Astron. Soc.378 55 [astro-ph/0608157] · doi:10.1111/j.1365-2966.2007.11720.x
[42] H.J. Mo, S. Mao and S.D.M. White, 1998 The formation of galactic disks, https://doi.org/10.1046/j.1365-8711.1998.01227.x Mon. Not. Roy. Astron. Soc.295 319 [astro-ph/9707093] · doi:10.1046/j.1365-8711.1998.01227.x
[43] J. Lee and U.-L. Pen, 2001 Galaxy spin statistics and spin-density correlation, https://doi.org/10.1086/321472 Astrophys. J.555 106 [astro-ph/0008135] · doi:10.1086/321472
[44] K. Osato et al., 2018 Strong orientation dependence of surface mass density profiles of dark haloes at large scales, https://doi.org/10.1093/mnras/sty762 Mon. Not. Roy. Astron. Soc.477 2141 [1712.00094] · doi:10.1093/mnras/sty762
[45] 2dFGRS Team collaboration, 2004 Galaxy groups in the 2dFGRS: the group-finding algorithm and the 2PIGG catalog, https://doi.org/10.1111/j.1365-2966.2004.07408.x Mon. Not. Roy. Astron. Soc.348 866 [astro-ph/0402567] · doi:10.1111/j.1365-2966.2004.07408.x
[46] X. Yang et al., 2007 Galaxy groups in the SDSS DR4: I. The catalogue and basic properties, https://doi.org/10.1086/522027 Astrophys. J.671 153 [0707.4640] · doi:10.1086/522027
[47] P. McDonald and U. Seljak, 2009 How to measure redshift-space distortions without sample variance J. Cosmol. Astropart. Phys.2009 10 007 [0810.0323]
[48] W.J. Percival, L. Verde and J.A. Peacock, 2004 Fourier analysis of luminosity-dependent galaxy clustering, https://doi.org/10.1111/j.1365-2966.2004.07245.x Mon. Not. Roy. Astron. Soc.347 645 [astro-ph/0306511] · doi:10.1111/j.1365-2966.2004.07245.x
[49] K. Akitsu, M. Takada and Y. Li, 2017 Large-scale tidal effect on redshift-space power spectrum in a finite-volume survey, https://doi.org/10.1103/PhysRevD.95.083522 Phys. Rev. D 95 083522 [1611.04723] · doi:10.1103/PhysRevD.95.083522
[50] K. Akitsu and M. Takada, 2018 Impact of large-scale tides on cosmological distortions via redshift-space power spectrum, https://doi.org/10.1103/PhysRevD.97.063527 Phys. Rev. D 97 063527 [1711.00012] · doi:10.1103/PhysRevD.97.063527
[51] Z. Zheng, R. Cen, H. Trac and J. Miralda-Escude, 2010 Radiative transfer modeling of lyman alpha emitters. II. New effects in galaxy clustering, https://doi.org/10.1088/0004-637X/726/1/38 Astrophys. J.726 38 [1003.4990] · doi:10.1088/0004-637X/726/1/38
[52] L.B. Newburgh et al., 2014 Calibrating CHIME, a new radio interferometer to probe dark energy, https://doi.org/10.1117/12.2056962 Proc. SPIE Int. Soc. Opt. Eng.9145 4V [1406.2267] · doi:10.1117/12.2056962
[53] A.M. Wolfe, E. Gawiser and J.X. Prochaska, 2005 Damped Lyman α systems, https://doi.org/10.1146/annurev.astro.42.053102.133950 Ann. Rev. Astron. Astrophys.43 861 [astro-ph/0509481] · doi:10.1146/annurev.astro.42.053102.133950
[54] R. Braun, 2012 Cosmological evolution of atomic gas and implications for 21 cm HI absorption, https://doi.org/10.1088/0004-637X/749/1/87 Astrophys. J.749 87 [1202.1840] · doi:10.1088/0004-637X/749/1/87
[55] H. Miyatake et al., 2016 Evidence of halo assembly bias in massive clusters, https://doi.org/10.1103/PhysRevLett.116.041301 Phys. Rev. Lett.116 041301 [1506.06135] · doi:10.1103/PhysRevLett.116.041301
[56] N. Hand et al., 2018 nbodykit: an open-source, massively parallel toolkit for large-scale structure, Astron. J.156 160 · doi:10.3847/1538-3881/aadae0
[57] F. Perez and B.E. Granger, 2007 Ipython: A system for interactive scientific computing, Comput. Sci. Engineer.9 21 · doi:10.1109/MCSE.2007.53
[58] J.D. Hunter, 2007 Matplotlib: a 2d graphics environment, Comput. Sci. Engineer.9 90 · doi:10.1109/MCSE.2007.55
[59] S. van der Walt, S.C. Colbert and G. Varoquaux, 2011 The numpy array: a structure for efficient numerical computation, Comput. Sci. Engineer.13 22 · doi:10.1109/MCSE.2011.37
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.