×

Revisiting Vainshtein screening for fast \(N\)-body simulations. (English) Zbl 1528.83128

MSC:

83F05 Relativistic cosmology
83C56 Dark matter and dark energy
47A10 Spectrum, resolvent
83C35 Gravitational waves
85A15 Galactic and stellar structure
70K40 Forced motions for nonlinear problems in mechanics
70F10 \(n\)-body problems
83-10 Mathematical modeling or simulation for problems pertaining to relativity and gravitational theory

References:

[1] Scoccimarro, Roman, Large-Scale Structure in Brane-Induced Gravity I. Perturbation Theory, Phys. Rev. D, 80 (2009) · doi:10.1103/PhysRevD.80.104006
[2] DESI Collaboration; Aghamousa, Amir, The DESI Experiment Part I: Science,Targeting, and Survey Design (2016)
[3] EUCLID Collaboration; Laureijs, R., Euclid Definition Study Report (2011)
[4] LSST Science, LSST Project Collaboration; Abell, Paul A., LSST Science Book, Version 2.0 (2009)
[5] Koyama, Kazuya, Cosmological Tests of Modified Gravity, Rept. Prog. Phys., 79 (2016) · doi:10.1088/0034-4885/79/4/046902
[6] Clifton, Timothy; Ferreira, Pedro G.; Padilla, Antonio; Skordis, Constantinos, Modified Gravity and Cosmology, Phys. Rept., 513, 1-189 (2012) · doi:10.1016/j.physrep.2012.01.001
[7] Ferreira, Pedro G., Cosmological Tests of Gravity, Ann. Rev. Astron. Astrophys., 57, 335-374 (2019) · doi:10.1146/annurev-astro-091918-104423
[8] Arnold, Christian; Leo, Matteo; Li, Baojiu, Realistic simulations of galaxy formation in f(R) modified gravity, Nature Astron., 3, 945-954 (2019) · doi:10.1038/s41550-019-0823-y
[9] Ruan, Cheng-Zong; Hernández-Aguayo, César; Li, Baojiu; Arnold, Christian; Baugh, Carlton M.; Klypin, Anatoly; Prada, Francisco, Fast full N-body simulations of generic modified gravity: conformal coupling models, JCAP, 05 (2022) · Zbl 1514.83068 · doi:10.1088/1475-7516/2022/05/018
[10] Heitmann, Katrin; Higdon, David; Nakhleh, Charles; Habib, Salman, Cosmic Calibration, Astrophys. J. Lett., 646, L1-L4 (2006) · doi:10.1086/506448
[11] Habib, Salman; Heitmann, Katrin; Higdon, David; Nakhleh, Charles; Williams, Brian, Cosmic Calibration: Constraints from the Matter Power Spectrum and the Cosmic Microwave Background, Phys. Rev. D, 76 (2007) · doi:10.1103/PhysRevD.76.083503
[12] Heitmann, Katrin; White, Martin; Wagner, Christian; Habib, Salman; Higdon, David, The Coyote Universe I: Precision Determination of the Nonlinear Matter Power Spectrum, Astrophys. J., 715, 104-121 (2010) · doi:10.1088/0004-637X/715/1/104
[13] Heitmann, Katrin; Higdon, David; White, Martin; Habib, Salman; Williams, Brian J.; Wagner, Christian, The Coyote Universe II: Cosmological Models and Precision Emulation of the Nonlinear Matter Power Spectrum, Astrophys. J., 705, 156-174 (2009) · doi:10.1088/0004-637X/705/1/156
[14] Lawrence, Earl; Heitmann, Katrin; White, Martin; Higdon, David; Wagner, Christian; Habib, Salman; Williams, Brian, The Coyote Universe III: simulation Suite and Precision Emulator for the Nonlinear Matter Power Spectrum, Astrophys. J., 713, 1322-1331 (2010) · doi:10.1088/0004-637X/713/2/1322
[15] Agarwal, Shankar; Abdalla, Filipe B.; Feldman, Hume A.; Lahav, Ofer; Thomas, Shaun A., PkANN - I. Non-linear matter power spectrum interpolation through artificial neural networks, Mon. Not. Roy. Astron. Soc., 424, 1409-1418 (2012) · doi:10.1111/j.1365-2966.2012.21326.x
[16] Heitmann, Katrin, The Mira-Titan Universe: precision Predictions for Dark Energy Surveys, Astrophys. J., 820, 108 (2016) · doi:10.3847/0004-637X/820/2/108
[17] Lawrence, Earl; Heitmann, Katrin; Kwan, Juliana; Upadhye, Amol; Bingham, Derek; Habib, Salman; Higdon, David; Pope, Adrian; Finkel, Hal; Frontiere, Nicholas, The Mira-Titan Universe II: matter Power Spectrum Emulation, Astrophys. J., 847, 50 (2017) · doi:10.3847/1538-4357/aa86a9
[18] Bocquet, Sebastian; Heitmann, Katrin; Habib, Salman; Lawrence, Earl; Uram, Thomas; Frontiere, Nicholas; Pope, Adrian; Finkel, Hal, The Mira-Titan Universe. III. Emulation of the Halo Mass Function, Astrophys. J., 901, 5 (2020) · doi:10.3847/1538-4357/abac5c
[19] Kwan, Juliana; Bhattacharya, Suman; Heitmann, Katrin; Habib, Salman, Cosmic Emulation: the Concentration-Mass Relation for wCDM Universes, Astrophys. J., 768, 123 (2013) · doi:10.1088/0004-637X/768/2/123
[20] DeRose, Joseph; Wechsler, Risa H.; Tinker, Jeremy L.; Becker, Matthew R.; Mao, Yao-Yuan; McClintock, Thomas; McLaughlin, Sean; Rozo, Eduardo; Zhai, Zhongxu, The Aemulus Project I: numerical Simulations for Precision Cosmology, Astrophys. J., 875, 69 (2019) · doi:10.3847/1538-4357/ab1085
[21] McClintock, Thomas; Rozo, Eduardo; Becker, Matthew R.; DeRose, Joseph; Mao, Yau-Yuan; McLaughlin, Sean; Tinker, Jeremy L.; Wechsler, Risa H.; Zhai, Zhongxu, The Aemulus Project II: emulating the Halo Mass Function, Astrophys. J., 872, 53 (2019) · doi:10.3847/1538-4357/aaf568
[22] Zhai, Zhongxu; Tinker, Jeremy L.; Becker, Matthew R.; DeRose, Joseph; Mao, Yao-Yuan; McClintock, Thomas; McLaughlin, Sean; Rozo, Eduardo; Wechsler, Risa H., The Aemulus Project III: emulation of the Galaxy Correlation Function, Astrophys. J., 874, 95 (2019) · doi:10.3847/1538-4357/ab0d7b
[23] Nishimichi, Takahiro, Dark Quest. I. Fast and Accurate Emulation of Halo Clustering Statistics and Its Application to Galaxy Clustering, Astrophys. J., 884, 29 (2019) · doi:10.3847/1538-4357/ab3719
[24] Kobayashi, Yosuke; Nishimichi, Takahiro; Takada, Masahiro; Takahashi, Ryuichi; Osato, Ken, Accurate emulator for the redshift-space power spectrum of dark matter halos and its application to galaxy power spectrum, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.063504
[25] Miyatake, Hironao; Kobayashi, Yosuke; Takada, Masahiro; Nishimichi, Takahiro; Shirasaki, Masato; Sugiyama, Sunao; Takahashi, Ryuichi; Osato, Ken; More, Surhud; Park, Youngsoo, Cosmological inference from an emulator based halo model. I. Validation tests with HSC and SDSS mock catalogs, Phys. Rev. D, 106 (2022) · doi:10.1103/PhysRevD.106.083519
[26] Cuesta-Lazaro, Carolina, Galaxy clustering from the bottom up: a Streaming Model emulator I, Mon. Not. Roy. Astron. Soc., 523, 3219-3238 (2023) · doi:10.1093/mnras/stad1207
[27] Donald-McCann, Jamie; Beutler, Florian; Koyama, Kazuya; Karamanis, Minas, matryoshka: halo model emulator for the galaxy power spectrum, Mon. Not. Roy. Astron. Soc., 511, 3768-3784 (2022) · doi:10.1093/mnras/stac239
[28] Maksimova, Nina A.; Garrison, Lehman H.; Eisenstein, Daniel J.; Hadzhiyska, Boryana; Bose, Sownak; Satterthwaite, Thomas P., AbacusSummit: a massive set of high-accuracy, high-resolution N-body simulations, Mon. Not. Roy. Astron. Soc., 508, 4017-4037 (2021) · doi:10.1093/mnras/stab2484
[29] Yuan, Sihan; Garrison, Lehman H.; Eisenstein, Daniel J.; Wechsler, Risa H., Stringent 8 constraints from small-scale galaxy clustering using a hybrid MCMC + emulator framework, Mon. Not. Roy. Astron. Soc., 515, 871-896 (2022) · doi:10.1093/mnras/stac1830
[30] Euclid Collaboration; Knabenhans, M., Euclid preparation: iX. EuclidEmulator2 - power spectrum emulation with massive neutrinos and self-consistent dark energy perturbations, Mon. Not. Roy. Astron. Soc., 505, 2840-2869 (2021) · doi:10.1093/mnras/stab1366
[31] Angulo, Raul E.; Zennaro, Matteo; Contreras, Sergio; Aricò, Giovanni; Pellejero-Ibañez, Marcos; Stücker, Jens, The BACCO simulation project: exploiting the full power of large-scale structure for cosmology, Mon. Not. Roy. Astron. Soc., 507, 5869-5881 (2021) · doi:10.1093/mnras/stab2018
[32] Winther, Hans; Casas, Santiago; Baldi, Marco; Koyama, Kazuya; Li, Baojiu; Lombriser, Lucas; Zhao, Gong-Bo, Emulators for the nonlinear matter power spectrum beyond ΛCDM, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.123540
[33] LSST Dark Energy Science Collaboration; Ramachandra, Nesar; Valogiannis, Georgios; Ishak, Mustapha; Heitmann, Katrin, Matter Power Spectrum Emulator for f(R) Modified Gravity Cosmologies, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.123525
[34] Arnold, Christian; Li, Baojiu; Giblin, Benjamin; Harnois-Déraps, Joachim; Cai, Yan-Chuan, forge: the f(R)-gravity cosmic emulator project - I. Introduction and matter power spectrum emulator, Mon. Not. Roy. Astron. Soc., 515, 4161-4175 (2022) · doi:10.1093/mnras/stac1091
[35] Harnois-Déraps, Joachim; Hernandez-Aguayo, Cesar; Cuesta-Lazaro, Carolina; Arnold, Christian; Li, Baojiu; Davies, Christopher T.; Cai, Yan-Chuan, MGLenS: modified gravity weak lensing simulations for emulation-based cosmological inference (2022)
[36] Brando, Guilherme; Fiorini, Bartolomeo; Koyama, Kazuya; Winther, Hans A., Enabling matter power spectrum emulation in beyond-CDM cosmologies with COLA, JCAP, 09 (2022) · doi:10.1088/1475-7516/2022/09/051
[37] Ruan, Cheng-Zong; Cuesta-Lazaro, Carolina; Eggemeier, Alexander; Li, Baojiu; Baugh, Carlton M.; Arnold, Christian; Bose, Sownak; Hernández-Aguayo, César; Zarrouk, Pauline; Davies, Christopher T., An emulator-based halo model in modified gravity - I. The halo concentration-mass relation and density profile (2023)
[38] Lombriser, Lucas, A parametrisation of modified gravity on nonlinear cosmological scales, JCAP, 11 (2016) · doi:10.1088/1475-7516/2016/11/039
[39] Hassani, Farbod; Lombriser, Lucas, N-body simulations for parametrized modified gravity, Mon. Not. Roy. Astron. Soc., 497, 1885-1894 (2020) · doi:10.1093/mnras/staa2083
[40] Bose, Benjamin; Cataneo, Matteo; Tröster, Tilman; Xia, Qianli; Heymans, Catherine; Lombriser, Lucas, On the road to per cent accuracy IV: ReACT - computing the non-linear power spectrum beyond CDM, Mon. Not. Roy. Astron. Soc., 498, 4650-4662 (2020) · doi:10.1093/mnras/staa2696
[41] Bose, B.; Tsedrik, M.; Kennedy, J.; Lombriser, L.; Pourtsidou, A.; Taylor, A., Fast and accurate predictions of the nonlinear matter power spectrum for general models of Dark Energy and Modified Gravity (2022) · doi:10.1093/mnras/stac3783
[42] Tassev, Svetlin; Zaldarriaga, Matias; Eisenstein, Daniel, Solving Large Scale Structure in Ten Easy Steps with COLA, JCAP, 06 (2013) · doi:10.1088/1475-7516/2013/06/036
[43] Tassev, Svetlin; Eisenstein, Daniel J.; Wandelt, Benjamin D.; Zaldarriaga, Matias, sCOLA: The N-body COLA Method Extended to the Spatial Domain (2015)
[44] Winther, Hans A.; Koyama, Kazuya; Manera, Marc; Wright, Bill S.; Zhao, Gong-Bo, COLA with scale-dependent growth: applications to screened modified gravity models, JCAP, 08 (2017) · Zbl 1515.83463 · doi:10.1088/1475-7516/2017/08/006
[45] Wright, Bill S.; Winther, Hans A.; Koyama, Kazuya, COLA with massive neutrinos, JCAP, 10 (2017) · doi:10.1088/1475-7516/2017/10/054
[46] Izard, Albert; Crocce, Martin; Fosalba, Pablo, ICE-COLA: towards fast and accurate synthetic galaxy catalogues optimizing a quasi N-body method, Mon. Not. Roy. Astron. Soc., 459, 2327-2341 (2016) · doi:10.1093/mnras/stw797
[47] Howlett, Cullan; Manera, Marc; Percival, Will J., L-PICOLA: a parallel code for fast dark matter simulation, Astron. Comput., 12, 109-126 (2015) · doi:10.1016/j.ascom.2015.07.003
[48] Valogiannis, Georgios; Bean, Rachel, Efficient simulations of large scale structure in modified gravity cosmologies with comoving Lagrangian acceleration, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.103515
[49] Fiorini, Bartolomeo; Koyama, Kazuya; Izard, Albert; Winther, Hans A.; Wright, Bill S.; Li, Baojiu, Fast generation of mock galaxy catalogues in modified gravity models with COLA, JCAP, 09 (2021) · doi:10.1088/1475-7516/2021/09/021
[50] Fiorini, Bartolomeo; Koyama, Kazuya; Izard, Albert, Studying large-scale structure probes of modified gravity with COLA, JCAP, 12 (2022) · doi:10.1088/1475-7516/2022/12/028
[51] LSST Dark Energy Science Collaboration; Wright, Bill S.; Sen Gupta, Ashim; Baker, Tessa; Valogiannis, Georgios; Fiorini, Bartolomeo, Hi-COLA: fast, approximate simulations of structure formation in Horndeski gravity, JCAP, 03 (2023) · Zbl 1522.83460 · doi:10.1088/1475-7516/2023/03/040
[52] Gubitosi, Giulia; Piazza, Federico; Vernizzi, Filippo, The Effective Field Theory of Dark Energy, JCAP, 02 (2013) · Zbl 1277.83009 · doi:10.1088/1475-7516/2013/02/032
[53] Gleyzes, Jérôme; Langlois, David; Vernizzi, Filippo, A unifying description of dark energy, Int. J. Mod. Phys. D, 23 (2015) · Zbl 1314.83055 · doi:10.1142/S021827181443010X
[54] Kaushal, Neerav; Villaescusa-Navarro, Francisco; Giusarma, Elena; Li, Yin; Hawry, Conner; Reyes, Mauricio, NECOLA: toward a Universal Field-level Cosmological Emulator, Astrophys. J., 930, 115 (2022) · doi:10.3847/1538-4357/ac5c4a
[55] Dvali, G. R.; Gabadadze, Gregory; Porrati, Massimo, 4-D gravity on a brane in 5-D Minkowski space, Phys. Lett. B, 485, 208-214 (2000) · Zbl 0961.83045 · doi:10.1016/S0370-2693(00)00669-9
[56] Schmidt, Fabian, Self-Consistent Cosmological Simulations of DGP Braneworld Gravity, Phys. Rev. D, 80 (2009) · doi:10.1103/PhysRevD.80.043001
[57] Schmidt, Fabian, Cosmological Simulations of Normal-Branch Braneworld Gravity, Phys. Rev. D, 80 (2009) · doi:10.1103/PhysRevD.80.123003
[58] Hernández-Aguayo, César; Ruan, Cheng-Zong; Li, Baojiu; Arnold, Christian; Baugh, Carlton M.; Klypin, Anatoly; Prada, Francisco, Fast full N-body simulations of generic modified gravity: derivative coupling models, JCAP, 01 (2022) · Zbl 1510.83095 · doi:10.1088/1475-7516/2022/01/048
[59] Vainshtein, A. I., To the problem of nonvanishing gravitation mass, Phys. Lett. B, 39, 393-394 (1972) · doi:10.1016/0370-2693(72)90147-5
[60] Hernández-Aguayo, César; Arnold, Christian; Li, Baojiu; Baugh, Carlton M., Galaxy formation in the brane world I: overview and first results, Mon. Not. Roy. Astron. Soc., 503, 3867-3885 (2021) · doi:10.1093/mnras/stab694
[61] Horndeski, Gregory Walter, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys., 10, 363-384 (1974) · doi:10.1007/BF01807638
[62] Deffayet, C.; Esposito-Farese, Gilles; Vikman, A., Covariant Galileon, Phys. Rev. D, 79 (2009) · doi:10.1103/PhysRevD.79.084003
[63] Kobayashi, Tsutomu; Yamaguchi, Masahide; Yokoyama, Jun’ichi, Generalized G-inflation: inflation with the most general second-order field equations, Prog. Theor. Phys., 126, 511-529 (2011) · Zbl 1243.83080 · doi:10.1143/PTP.126.511
[64] Bellini, Emilio; Sawicki, Ignacy, Maximal freedom at minimum cost: linear large-scale structure in general modifications of gravity, JCAP, 07 (2014) · doi:10.1088/1475-7516/2014/07/050
[65] Zumalacárregui, Miguel; Bellini, Emilio; Sawicki, Ignacy; Lesgourgues, Julien; Ferreira, Pedro G., hi_class: Horndeski in the Cosmic Linear Anisotropy Solving System, JCAP, 08 (2017) · doi:10.1088/1475-7516/2017/08/019
[66] Bellini, Emilio; Sawicki, Ignacy; Zumalacárregui, Miguel, hi_class: background Evolution, Initial Conditions and Approximation Schemes, JCAP, 02 (2020) · Zbl 1489.83029 · doi:10.1088/1475-7516/2020/02/008
[67] Pace, Francesco; Battye, Richard; Bellini, Emilio; Lombriser, Lucas; Vernizzi, Filippo; Bolliet, Boris, Comparison of different approaches to the quasi-static approximation in Horndeski models, JCAP, 06 (2021) · Zbl 1485.83055 · doi:10.1088/1475-7516/2021/06/017
[68] Brando, Guilherme; Koyama, Kazuya; Wands, David; Zumalacárregui, Miguel; Sawicki, Ignacy; Bellini, Emilio, Fully relativistic predictions in Horndeski gravity from standard Newtonian N-body simulations, JCAP, 09 (2021) · Zbl 1486.83067 · doi:10.1088/1475-7516/2021/09/024
[69] LIGO Scientific, Virgo Collaboration; Abbott, B. P., GW170817: observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.161101
[70] Cusin, Giulia; Lewandowski, Matthew; Vernizzi, Filippo, Nonlinear Effective Theory of Dark Energy, JCAP, 04 (2018) · Zbl 1541.83133 · doi:10.1088/1475-7516/2018/04/061
[71] Koyama, Kazuya; Silva, Fabio P., Non-linear interactions in a cosmological background in the DGP braneworld, Phys. Rev. D, 75 (2007) · doi:10.1103/PhysRevD.75.084040
[72] Crocce, Martin; Scoccimarro, Roman, Renormalized cosmological perturbation theory, Phys. Rev. D, 73 (2006) · doi:10.1103/PhysRevD.73.063519
[73] Scoccimarro, Roman; Colombi, Stephane; Fry, James N.; Frieman, Joshua A.; Hivon, Eric; Melott, Adrian, Nonlinear evolution of the bispectrum of cosmological perturbations, Astrophys. J., 496, 586 (1998) · doi:10.1086/305399
[74] Gil-Marin, Hector; Wagner, Christian; Fragkoudi, Frantzeska; Jimenez, Raul; Verde, Licia, An improved fitting formula for the dark matter bispectrum, JCAP, 02 (2012) · doi:10.1088/1475-7516/2012/02/047
[75] Bird, Simeon; Viel, Matteo; Haehnelt, Martin G., Massive Neutrinos and the Non-linear Matter Power Spectrum, Mon. Not. Roy. Astron. Soc., 420, 2551-2561 (2012) · doi:10.1111/j.1365-2966.2011.20222.x
[76] Takahashi, Ryuichi; Sato, Masanori; Nishimichi, Takahiro; Taruya, Atsushi; Oguri, Masamune, Revising the Halofit Model for the Nonlinear Matter Power Spectrum, Astrophys. J., 761, 152 (2012) · doi:10.1088/0004-637X/761/2/152
[77] Mead, Alexander; Brieden, Samuel; Tröster, Tilman; Heymans, Catherine, HMcode-2020: improved modelling of non-linear cosmological power spectra with baryonic feedback (2020) · doi:10.1093/mnras/stab082
[78] Umeh, Obinna, Optimal computation of anisotropic galaxy three point correlation function multipoles using 2DFFTLOG formalism, JCAP, 05 (2021) · Zbl 1485.83185 · doi:10.1088/1475-7516/2021/05/035
[79] Fang, Xiao; Eifler, Tim; Krause, Elisabeth, 2D-FFTLog: efficient computation of real space covariance matrices for galaxy clustering and weak lensing, Mon. Not. Roy. Astron. Soc., 497, 2699-2714 (2020) · doi:10.1093/mnras/staa1726
[80] Hand, Nick; Feng, Yu; Beutler, Florian; Li, Yin; Modi, Chirag; Seljak, Uros; Slepian, Zachary, nbodykit: an open-source, massively parallel toolkit for large-scale structure, Astron. J., 156, 160 (2018) · doi:10.3847/1538-3881/aadae0
[81] Li, Baojiu; Zhao, Gong-Bo; Teyssier, Romain; Koyama, Kazuya, ECOSMOG: an Efficient Code for Simulating Modified Gravity, JCAP, 01 (2012) · doi:10.1088/1475-7516/2012/01/051
[82] Teyssier, Romain, Cosmological hydrodynamics with adaptive mesh refinement: a new high resolution code called ramses, Astron. Astrophys., 385, 337-364 (2002) · doi:10.1051/0004-6361:20011817
[83] Prunet, S.; Pichon, C.; Aubert, D.; Pogosyan, D.; Teyssier, R.; Gottloeber, S., Initial Conditions for Large Cosmological Simulations, Astrophys. J. Suppl., 178, 179 (2008) · doi:10.1086/590370
[84] Zeldovich, Ya. B., Gravitational instability: an Approximate theory for large density perturbations, Astron. Astrophys., 5, 84-89 (1970)
[85] Barreira, Alexandre; Li, Baojiu; Hellwing, Wojciech A.; Baugh, Carlton M.; Pascoli, Silvia, Nonlinear structure formation in the Cubic Galileon gravity model, JCAP, 10 (2013) · doi:10.1088/1475-7516/2013/10/027
[86] Barreira, Alexandre; Li, Baojiu; Baugh, Carlton M.; Pascoli, Silvia, Linear perturbations in Galileon gravity models, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.124016
[87] R.W. Hockney and J.W. Eastwood, Computer simulation using particles, CRC Press (1988). · Zbl 0662.76002
[88] Crocce, M.; Pueblas, S.; Scoccimarro, R., Transients from Initial Conditions in Cosmological Simulations, Mon. Not. Roy. Astron. Soc., 373, 369-381 (2006) · doi:10.1111/j.1365-2966.2006.11040.x
[89] Bernardeau, F.; Colombi, S.; Gaztanaga, E.; Scoccimarro, R., Large scale structure of the universe and cosmological perturbation theory, Phys. Rept., 367, 1-248 (2002) · Zbl 0996.85005 · doi:10.1016/S0370-1573(02)00135-7
[90] Brando, Guilherme; Koyama, Kazuya; Wands, David, Relativistic Corrections to the Growth of Structure in Modified Gravity, JCAP, 01 (2021) · Zbl 1484.83034 · doi:10.1088/1475-7516/2021/01/013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.