×

SPACE: 3D parallel solvers for Vlasov-Maxwell and Vlasov-Poisson equations for relativistic plasmas with atomic transformations. (English) Zbl 1520.78047

Summary: A parallel, relativistic, three-dimensional particle-in-cell code SPACE has been developed for the simulation of electromagnetic fields, relativistic particle beams, and plasmas. In addition to the standard second-order Particle-in-Cell (PIC) algorithm, SPACE includes efficient novel algorithms to resolve atomic physics processes such as multi-level ionization of plasma atoms, recombination, and electron attachment to dopants in dense neutral gases. SPACE also contains a highly adaptive particle-based method, called Adaptive Particle-in-Cloud (AP-Cloud), for solving the Vlasov-Poisson problems. It eliminates the traditional Cartesian mesh of PIC and replaces it with an adaptive octree data structure. The code’s algorithms, structure, capabilities, parallelization strategy, and performance have been discussed. Typical examples of SPACE applications to accelerator science and engineering problems are described.

MSC:

78A60 Lasers, masers, optical bistability, nonlinear optics
78A10 Physical optics
78M20 Finite difference methods applied to problems in optics and electromagnetic theory
82D75 Nuclear reactor theory; neutron transport
81V45 Atomic physics
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
76N15 Gas dynamics (general theory)
76M28 Particle methods and lattice-gas methods
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65Y05 Parallel numerical computation
35Q83 Vlasov equations
35Q60 PDEs in connection with optics and electromagnetic theory

Software:

SPACE.

References:

[1] Umstadter, D., J. Phys. D, Appl. Phys., 36, R151 (2003)
[2] Esarey, E.; Schroeder, C.; Leemans, W., Rev. Mod. Phys., 81, 1229 (2009)
[3] Albert, F., New J. Phys., 23, Article 031101 pp. (2020)
[4] Hemker, R., Lect. Notes Comput. Sci. Eng., 2331, 342-351 (2002)
[5] Nieter, C.; Cary, J. R., J. Comput. Phys., 196, 2, 448-473 (2004) · Zbl 1115.76431
[6] Vay, J.-L.; Almgren, A.; Bell, J.; Ge, L.; Grote, D.; Hogan, M.; Kononenko, O.; Lehe, R.; Myers, A.; Ng, C.; Park, J.; Ryne, R.; Shapoval, O.; Thevenet, M.; Zhang, W., Nucl. Instrum. Methods Phys. Res. A, 909, 476-479 (2018)
[7] Huang, C.; Decyk, V.; Ren, C.; Zhou, M.; Lu, W.; Mori, W.; Cooley, J.; Antonsen, T.; Katsouleas, T., J. Comput. Phys., 217, 658-679 (2006) · Zbl 1178.76293
[8] Wang, X.; Samulyak, R.; Jiao, X.; Yu AP-Cloud, K., J. Comput. Phys., 316, 682-699 (2016) · Zbl 1349.82128
[9] Yu, K.; Samulyak, R.; Yonehara, K.; Freemire, B., Phys. Rev. Accel. Beams, 20, 3, Article 032002 pp. (2017)
[10] Yu, K.; Samulyak, R.; Yonehara, K.; Freemire, B., J. Instrum., 13, Article P01008 pp. (2018)
[11] Kumar, P.; Yu, K.; Zgadzaj, R.; Amorim, L.; Downer, M. C.; Welch, J.; Litvinenko, V. N.; Vafaei-Najafabadi, N.; Samulyak, R., Phys. Plasmas, 26, 8, Article 083106 pp. (2019)
[12] Kumar, P.; Yu, K.; Zgadzaj, R.; Downer, M. C.; Petrushina, I.; Samulyak, R.; Litvinenko, V. N.; Vafaei-Najafabadi, N., Phys. Plasmas, 28, 1, Article 013102 pp. (2021)
[13] Ma, J.; Wang, X.; Wang, G.; Yu, K.; Samulyak, R.; Litvinenko, V., Phys. Rev. Accel. Beams, 21, Article 111001 pp. (2018)
[14] Ma, J.; Wang, G.; Litvinenko, V., Int. J. Mod. Phys. A, 34, 36, Article 1942029 pp. (2019)
[15] Henon, M., Astron. Astrophys., 114, 211-212 (1982)
[16] Hockney, R.; Eastwood, J., Computer Simulation Using Particles (1981), McGraw-Hill: McGraw-Hill London · Zbl 0662.76002
[17] Yee, K. S., IEEE Trans. Antennas Propag., 14, 3, 302-307 (1966) · Zbl 1155.78304
[18] Boris, J., (Proceedings of the 4th Conf. on Numerical Simulation of Plasmas, Naval Research Laboratory (1971)), 3-67
[19] Vay, J.-L., Phys. Plasmas, 15, 5, Article 56701 pp. (2008)
[20] Villasenor, O.; Buneman, John, Comput. Phys. Commun., 69, 306-316 (1992)
[21] Esirkepov, T., Comput. Phys. Commun., 135, 2, 144-153 (2001) · Zbl 0981.78014
[22] Vay, J.-L., Phys. Rev. Lett., 98, 13, Article 130405 pp. (2007)
[23] Yu, K. M., Computational Relativistic Electrodynamics: New Algorithms, Parallel Software, and Applications to Accelerator Design (2016)
[24] Meagher, D., Comput. Graph. Image Process., 19, 129-147 (1982)
[25] Benito, J.; Ureña, F.; Gavete, L., Appl. Math. Model., 25, 12, 1039-1053 (2001) · Zbl 0994.65111
[26] Vay, J.-L.; Colella, P.; McCorquodale, P.; Straalen, B. V., Laser Part. Beams, 20, 4, 569-575 (2002)
[27] Vay, J.-L., Phys. Plasmas, 11, 5, 2928-2934 (2004)
[28] Colella, P.; Norgaard, P., J. Comput. Phys., 229, 4, 947-957 (2010) · Zbl 1185.82054
[29] Freemire, B., High pressure gas filled RF cavity beam test at the Fermilab MuCool test area (2013), Illinois Institute of Technology, Doctoral Thesis
[30] Bruhwiler, D. L.; Dimitrov, D. A.; Gary, J. R.; Esarey, E.; Leemans, W.; Giacone, R. E., Phys. Plasmas, 10, 5 II, 2022-2030 (2003)
[31] Chen, M.; Cormier-Michel, E.; Geddes, C. G.R.; Bruhwiler, D. L.; Yu, L. L.; Esarey, E.; Schroeder, C. B.; Leemans, W. P., J. Comput. Phys., 236, 220-228 (2013)
[32] Ammosov, M.; Delone, N.; Krainov, V., Zh. Eksp. Teor. Fiz., 91, 2008-2013 (1986)
[33] Cheng, A.; Samulyak, R., Efficient numerical algorithm for multi-level ionization of high-atomic-number gases (2022)
[34] Childs, H.; Brugger, E.; Whitlock, B.; Meredith, J.; Ahern, S.; Pugmire, D.; Biagas, K.; Miller, M.; Harrison, C.; Weber, G. H.; Krishnan, H.; Fogal, T.; Sanderson, A.; Garth, C.; Bethel, E. W.; Camp, D.; Rübel, O.; Durant, M.; Favre, J. M.; Navrátil, P., (High Performance Visualization-Enabling Extreme-Scale Scientific Insight (2012)), 357-372
[35] Berenger, J., Perfectly Matched Layer (PML) for Computational Electromagnetics (2007), Morgan & Claypool Publishers
[36] Burstedde, C.; Wilcox, L. C.; Ghattas, O., SIAM J. Sci. Comput., 33, 3, 1103-1133 (2011) · Zbl 1230.65106
[37] Balay, S.; Gropp, W. D.; McInnes, L. C.; Smith, B. F., (Arge, E.; Bruaset, A. M.; Langtangen, H. P., Modern Software Tools in Scientific Computing (1997), Birkhäuser Press), 163-202
[38] Litvinenko, V. N.; Derbenev, Y. S., Phys. Rev. Lett., 102, Article 114801 pp. (2009)
[39] Kumar, P., Mathematical models and numerical algorithms for laser-matter interaction with applications to plasma wakefield accelerators (2020), Stony Brook University, Doctoral thesis
[40] Samulyak, R.; Wang, X.; Chen, H.-C., J. Comput. Phys., 362, 1-19 (2018) · Zbl 1391.76631
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.