×

A fast parallel Poisson solver on irregular domains applied to beam dynamics simulations. (English) Zbl 1192.78010

Summary: We discuss the scalable parallel solution of the Poisson equation within a Particle-In-Cell (PIC) code for the simulation of electron beams in particle accelerators of irregular shape. The problem is discretized by finite differences. Depending on the treatment of the Dirichlet boundary the resulting system of equations is symmetric or ‘mildly’ nonsymmetric positive definite. In all cases, the system is solved by the preconditioned conjugate gradient algorithm with Smoothed Aggregation (SA) based Algebraic MultiGrid (AMG) preconditioning. We investigate variants of the implementation of SA-AMG that lead to considerable improvements in the execution times. We demonstrate good scalability of the solver on distributed memory parallel processor with up to 2048 processors. We also compare our iterative solver with an FFT-based solver that is more commonly used for applications in beam dynamics.

MSC:

78A35 Motion of charged particles
82C22 Interacting particle systems in time-dependent statistical mechanics
81V25 Other elementary particle theory in quantum theory
78A30 Electro- and magnetostatics
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
65Y05 Parallel numerical computation
65F10 Iterative numerical methods for linear systems

Software:

Trilinos; FFTPACK; OPAL; ML

References:

[1] Adams, M.; Brezina, M.; Hu, J.; Tuminaro, R., Parallel multigrid smoothing: polynomial versus Gauss-Seidel, J. Comput. Phys., 188, 2, 593-610 (2003) · Zbl 1022.65030
[2] A. Adelmann, C. Kraus, Y. Ineichen, J.J. Yang, The OPAL (Object Oriented Parallel Accelerator Library) Framework, Tech. Rep. PSI-PR-08-02, Paul Scherrer Institut, <http://amas.web.psi.ch/docs/opal/opal_user_guide-1.1.6.pdf; A. Adelmann, C. Kraus, Y. Ineichen, J.J. Yang, The OPAL (Object Oriented Parallel Accelerator Library) Framework, Tech. Rep. PSI-PR-08-02, Paul Scherrer Institut, <http://amas.web.psi.ch/docs/opal/opal_user_guide-1.1.6.pdf
[3] A. Adelmann, The \(IP^2\) http://amas.web.psi.ch/docs/ippl-doc/ippl_user_guide.pdf; A. Adelmann, The \(IP^2\) http://amas.web.psi.ch/docs/ippl-doc/ippl_user_guide.pdf
[4] P.N. Swarztrauber, FFTPACK, a Package of FORTRAN Subprograms for the Fast Fourier Transform of Periodic and Other Symmetric Sequences, Available from <http://www.netlib.org/fftpack/; P.N. Swarztrauber, FFTPACK, a Package of FORTRAN Subprograms for the Fast Fourier Transform of Periodic and Other Symmetric Sequences, Available from <http://www.netlib.org/fftpack/
[5] Forsythe, G. E.; Wasow, W. R., Finite-difference Methods for Partial Differential Equations (1960), Wiley: Wiley New York · Zbl 0099.11103
[6] Gluckstern, R. L., Analytic model for halo formation in high current ion linacs, Phys. Rev. Lett., 73, 9, 1247-1250 (1994)
[7] M.W. Gee, C.M. Siefert, J. Hu, R.S. Tuminaro, M. Sala, ML 5.0 Smoothed Aggregation User’s Guide, Tech. Report SAND2006-2649, Sandia National Laboratories, May 2006.; M.W. Gee, C.M. Siefert, J. Hu, R.S. Tuminaro, M. Sala, ML 5.0 Smoothed Aggregation User’s Guide, Tech. Report SAND2006-2649, Sandia National Laboratories, May 2006.
[8] Greenbaum, A., Iterative Methods for Solving Linear Systems (1997), SIAM: SIAM Philadelphia, PA · Zbl 0883.65022
[9] Hackbusch, W., Multigrid Methods and Applications (1985), Springer: Springer Berlin · Zbl 0577.65118
[10] Hackbusch, W., Iterative Solution of Large Sparse Systems of Equations (1994), Springer: Springer Berlin · Zbl 0789.65017
[11] Heroux, M. A., An overview of the Trilinos project, ACM Trans. Math. Softw., 31, 3, 397-423 (2005) · Zbl 1136.65354
[12] Hestenes, M. R.; Stiefel, E., Methods of conjugent gradients for solving linear systems, J. Res. Nat. Bur. Standards, 49, 409-436 (1952) · Zbl 0048.09901
[13] Hockney, R. W.; Eastwood, J. W., Computer Simulation using Particles (1988), Institute of Physics Publishing: Institute of Physics Publishing Bristol · Zbl 0662.76002
[14] Jomaa, Z.; Macaskill, C., The embedded finite difference method for the Poisson equation in a domain with an irregular boundary and Dirichlet boundary conditions, J. Comput. Phys., 202, 2, 488-506 (2005) · Zbl 1061.65107
[15] Landau, L. D.; Lifshitz, E. M., Electrodynamics of Continuous Media (1984), Pergamon: Pergamon Oxford · Zbl 0122.45002
[16] LeVeque, R. J., Finite Difference Methods for Ordinary and Partial Differential Equations (2007), SIAM: SIAM Philadelphia, PA · Zbl 1127.65080
[17] McCorquodale, P.; Colella, P.; Grote, D. P.; Vay, J.-L., A node-centered local refinement algorithm for Poisson’s equation in complex geometries, J. Comput. Phys., 201, 1, 34-60 (2004) · Zbl 1059.65094
[18] Pöplau, G.; van Rienen, U., A self-adaptive multigrid technique for 3-D space charge calculations, IEEE Trans. Magn., 44, 6, 1242-1245 (2008)
[19] Qiang, J.; Gluckstern, R. L., Three-dimensional Poisson solver for a charged beam with large aspect ratio in a conducting pipe, Comput. Phys. Commun., 160, 2, 120-128 (2004) · Zbl 1196.74280
[20] Qiang, J.; Ryne, R. D., Parallel 3D Poisson solver for a charged beam in a conducting pipe, Comput. Phys. Commun., 138, 1, 18-28 (2001) · Zbl 0982.78024
[21] F.J. Sacherer, Transverse Space-charge Effects in Circular Accelerators, Ph.D. Thesis, University of California, Berkeley, 1968.; F.J. Sacherer, Transverse Space-charge Effects in Circular Accelerators, Ph.D. Thesis, University of California, Berkeley, 1968.
[22] Sacherer, F. J., RMS envelope equations with space charge, IEEE Trans. Nucl. Sci., 18, 3, 1105-1107 (1971)
[23] Saad, Y.; Schultz, M. H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 3, 856-869 (1986) · Zbl 0599.65018
[24] Serafini, D. B.; McCorquodale, P.; Colella, P., Advanced 3D Poisson solvers and particle-in-cell methods for accelerator modeling, J. Phys.: Conf. Ser., 16, 481-485 (2005)
[25] T. Schietinger et al., Measurements and modeling at the PSI-XFEL 500-kV low-emittance electron source, in: Proceedings of the 24th Linear Accelerator Conference, Victoria, 2008, pp. 621-623, Available from <http://trshare.triumf.ca/linac08proc/Proceedings/papers/tup097.pdf; T. Schietinger et al., Measurements and modeling at the PSI-XFEL 500-kV low-emittance electron source, in: Proceedings of the 24th Linear Accelerator Conference, Victoria, 2008, pp. 621-623, Available from <http://trshare.triumf.ca/linac08proc/Proceedings/papers/tup097.pdf
[26] Shortley, G. H.; Weller, R., The numerical solution of Laplace’s equation, J. Appl. Phys., 9, 334-344 (1939) · Zbl 0019.03801
[27] Struckmeier, J.; Reiser, M., Theoretical studies of envelope oscillations and instabilities of mismatched intense charged-particle beams in periodic focusing channels, Part. Accel., 14, 2-3, 227-260 (1984)
[28] Swarztrauber, P., Vectorizing the FFTs, (Rodrigue, G., Parallel Computations (1982), Academic Press: Academic Press New York), 51-83 · Zbl 0589.68001
[29] The Trilinos Project Home Page, <http://trilinos.sandia.gov; The Trilinos Project Home Page, <http://trilinos.sandia.gov
[30] Trottenberg, U.; Clees, T., Multigrid software for industrial applications – from MG00 to SAMG, (Hirschel, E. H.; Weiland, C.; Rizzi, A., Notes on numerical fluid mechanics. Notes on numerical fluid mechanics, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 100 (2009), Springer: Springer Berlin), 423-436
[31] Trottenberg, U.; Oosterlee, C. W.; Schüller, A., Multigrid (2000), Academic Press
[32] R.S. Tuminaro, C. Tong, Parallel smoothed aggregation multigrid: aggregation strategies on massively parallel machines, in: ACM/IEEE SC2000 Conference (SC2000), 2000, 21pp., doi:10.1109/SC.2000.10008; R.S. Tuminaro, C. Tong, Parallel smoothed aggregation multigrid: aggregation strategies on massively parallel machines, in: ACM/IEEE SC2000 Conference (SC2000), 2000, 21pp., doi:10.1109/SC.2000.10008
[33] Vaněk, P.; Mandel, J.; Brezina, M., Algebraic multigrid based on smoothed aggregation for second and fourth order problems, Computing, 56, 3, 179-196 (1996) · Zbl 0851.65087
[34] van der Vorst, H. A., Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13, 2, 631-644 (1992) · Zbl 0761.65023
[35] Wiedemann, H., Particle Accelerator Physics (2007), Springer: Springer Berlin
[36] Young, D. M.; Jea, K. C., Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods, Linear Algebra Appl., 34, 159-194 (1980) · Zbl 0463.65025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.