×

Delays compensation for an atmospheric sliced tomatoes dehydration process via state predictors. (English) Zbl 1427.93195

Summary: In this paper the experimental application of static and dynamic predictors based control of the temperature of a sliced tomatoes dehydration process is presented. The control schemes concerning the case corresponding to the process under consideration, where the state delay is greater than the input delay, are developed. The number of subdivisions in the approximation of the distributed delays of the dynamic predictors by finite sums is chosen to insure loop system stability. The two schemes are experimentally tested, and a comparison of their performance is presented.

MSC:

93D15 Stabilization of systems by feedback
93C15 Control/observation systems governed by ordinary differential equations
93C05 Linear systems in control theory
34K35 Control problems for functional-differential equations
93B52 Feedback control
Full Text: DOI

References:

[1] Manitius, A.; Olbrot, A., Finite spectrum assignment problem for systems with delays, IEEE Trans. Autom. Control, 24, 4, 541-553 (1979) · Zbl 0425.93029
[2] Arstein, Z., Linear systems with delayed controls: a reduction, IEEE Trans. Autom. Control, 27, 4, 869-879 (1982) · Zbl 0486.93011
[3] Assche, V. V.; Dambrine, M.; Lafay, J. F.; Richard, J. P., Some problems arising in the implementation of distributed-delay control laws, Proceedings of the 38th IEEE Conference on Decision and Control, Arizona, USA, 4668-4672 (1999)
[4] Engelborghs, K.; Dambrine, M.; Roose, D., Limitations of a class of stabilization methods for delay systems, IEEE Trans. Autom. Control, 46, 2, 336-339 (2001) · Zbl 1056.93607
[5] Mondié, S.; Dambrine, M.; Santos, O., Approximation of control laws with distributed delays: a necessary condition for stability, Kybernetika, 38, 5, 541-551 (2002) · Zbl 1265.93148
[6] Zhou, B.; Lin, Z.; Duan, G. R., Truncated predictor feedback for linear systems with long time-varying input delays, Automatica, 48, 10, 2387-2399 (2012) · Zbl 1271.93123
[7] Zhou, B., Truncated Predictor Feedback for Time-Delay Systems (2014), Springer Berlin Heidelberg · Zbl 1306.93003
[8] Rodríguez-Guerrero, L.; Ramirez, A.; Cuvas, C., Predictive control and truncated predictor: A comparative study on numerical benchmark problems, Proceedings of the 11th International Conference on Electrical Engineering, Computing Science and Automatic Control, Campeche, Mexico, 101-106 (2014)
[9] He, J. B.; Wang, Q. G.; Lee, T. H., PI/PID controller tuning via LQR approach, Chem. Eng. Sci., 55, 13, 2429-2439 (2000)
[10] Zítek, P.; Fiser, J., Predictor based control design for time delay systems, in proc. of the IEEE international conference on computational intelligence for modelling, control and automation, and international conference on intelligent agents, Web Technologies and Internet Commerce, Vienna, Austria, 517-522 (2005)
[11] Sanz, R.; García, P.; Zhong, Q. C.; Albertos, P., Predictor-based control of a class of time-delay systems and its application to quadrotors, IEEE Trans. Ind. Electron., 64, 1, 459-469 (2017)
[12] Lozano, R.; Castillo, P.; Garcia, P.; Dzul, A., Robust prediction-based control for unstable delay systems: application to the yaw control of a mini-helicopter, Automatica, 40, 4, 603-612 (2004) · Zbl 1070.93042
[13] Kharitonov, V. L., An extension of the prediction scheme to the case to system with both input and state delay, Automatica, 50, 1, 211-217 (2014) · Zbl 1298.93196
[14] Kharitonov, V. L., Prediction based control: the implementation problem, Differ. Equ. Control Process., 51, 13, 1675-1682 (2015) · Zbl 1339.93096
[15] Rodríguez-Guerrero, L.; Kharitonov, V. L.; Mondié, S., Robust stability of dynamic predictor based control laws for input and state delay systems, Syst. Control Lett., 96, 95-102 (2016) · Zbl 1347.93197
[16] Bresch-Pietri, D.; Petit, N., Prediction-based control for linear systems with input-and state-delay-robustness to delay mismatch, Proceedings of the IFAC World Congress, South Africa, Africa, volume 47, 11410-11418 (2014)
[17] Bekiaris-Liberis, N., Simultaneous compensation of input and state delays for nonlinear systems, Syst. Control Lett., 73, 96-102 (2014) · Zbl 1297.93136
[18] Yoon, S. Y.; Lin, Z., Robust output regulation of linear time-delay systems: a state predictor approach, Int. J. Robust Nonlinear Control, 26, 8, 1686-1704 (2016) · Zbl 1342.93046
[19] Barbosa-Cánovas, G. V.; Vega-Mercado, H., Dehydration of Foods (1996), Springer Science & Business Media
[20] Andrew, H. W.W.; Zoss, L. M., Applied instrumentation in the process industry, Gulf (1979)
[21] Rodríguez-Guerrero, L.; Santos-Sánchez, O. J.; Cervantes-Escorcia, N.; Romero, H., Real-time discrete suboptimal control for systems with input and state delays: experimental tests on a dehydration process, ISA Transactions, 71, 448-457 (2017)
[22] Santos-Sánchez, N. F.; Salas-Coronado, R.; Santos-Sánchez, O. J.; Romero, H.; Garrido-Aranda, E., On the effects of the temperature control at the performance of a dehydration process: energy optimization and nutrients retention, Int. J. Adv. Manuf. Technol., 86, 9-12, 3157-3171 (2016)
[23] Wellstead, P. E.; Zarrop, M. B., Self-tuning Systems: Control and Signal Processing (1991), John Wiley & Sons, Inc.
[24] Bellman, R., The stability of solutions of linear differential equations, Duke Math. J., 10, 4, 643-647 (1943) · Zbl 0061.18502
[25] Hoffman, J. D.; Frankel, S., Numerical Methods for Engineers and Scientists (2001), CRC Press · Zbl 1068.65001
[26] Franklin, G. F.; Powell, J. D.; Workman, M. L., Digital control of dynamic systems, Menlo Park (1998), Addison-Wesley
[27] Neimark, J., D-subdivisions and spaces of quasipolynomials, Prikl. Mat. Mekh, 13, 5, 349-380 (1949) · Zbl 0039.30304
[28] Vyhlídal, T.; Zítek, P., Mapping based algorithm for large-scale computation of quasi-polynomial zeros, IEEE Trans. Automat. Control, 54, 1, 171-177 (2009) · Zbl 1367.65076
[29] Astrom, K. J.; Hagglund, T., PID Controllers: Theory, Design, and Tuning (1995), Instrument Society of America: Research Triangle Park
[30] Ziegler, J. G.; Nichols, N. B., Optimum settings for automatic controllers, Trans. Am. Soc. Mech. Eng., 64, 11, 759-768 (1942)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.