×

Adaptive control design and experiments for LAAS “helicopter” benchmark. (English) Zbl 1293.93444

Summary: Application of the passification-based adaptive control technique for control of Quanser/LAAS “Helicopter” laboratory setup is presented. Two adaptive control laws for pitch angle control are designed and experimentally tested. The MATLAB/Simulink and WinCon software environment is used for adaptive control laws implementation and the real-world experiments. The experimental results demonstrate high closed loop system performance and robustness of the suggested control laws with respect to parametric uncertainties and unmodeled plant dynamics and actuator faults.

MSC:

93C40 Adaptive control/observation systems
93B40 Computational methods in systems theory (MSC2010)
93B35 Sensitivity (robustness)
93C95 Application models in control theory

Software:

WinCon; Simulink
Full Text: DOI

References:

[1] Andrievskii, B. R.; Fradkov, A. L., Method of passification in adaptive control, estimation, and synchronization, Autom Remote Control, 67, 11, 1699-1731 (2006), [Translated from Automatika i Telemekhanika 2006; 11] · Zbl 1195.93117
[2] Andrievskii, B. R.; Stotsky, A. A.; Fradkov, A. L., Velocity gradient algorithms in control and adaptation problems, Autom Remote Control, 1533-1564 (1989), [Translated from Automatika i Telemekhanika 1988; 12] · Zbl 0699.93022
[3] Andrievsky, B.; Fradkov, A. L., Combined adaptive flight control system, (Proceedings of the 5th International ESA Conference on Spacecraft Guidance. Proceedings of the 5th International ESA Conference on Spacecraft Guidance, Navigation and Control Systems (2003)), 299-302
[4] Apkarian, J., Internet control, Circuit Cellar (1999), http://www.circuitcellar.com
[5] Barkana, I., Simple adaptive control: a stable direct model reference adaptive control methodology: brief survey, (Proceedings of the 9th IFAC Workshop on Adaptation and Learning in Control and Signal Processing. Proceedings of the 9th IFAC Workshop on Adaptation and Learning in Control and Signal Processing, Saint Petersburg, Russia (2007)), http://www.ifacpapersonline. net/ · Zbl 1332.93163
[6] Boskovic, J.; Mehra, R., Failure detection, identfication and reconfiguration in flight control Fault Diagnosis and Fault Tolerance for Mechatronic Systems (2002), Springer- Verlag: Springer- Verlag New York
[7] Campbell, B.; Lieven, N., Failure tolerant control using minimal controller synthesis for the X-38 crew return vehicule, (Proceedings of the 5th International ESA Conference on Spacecraft Guidance (2003), Navigation and Control Systems)
[8] Chen, D. R.; Chen, H. S.; Wang, J. D., Comparison between the system identification and the neural network methods in identifying a model helicopter’s yaw movement, Int J Nonlinear Sci Numer Simul, 391-394 (2002), 3-4:
[9] Chen, D. R.; Chen, H. S., System identification of a model helicopter’syawmovement basedon an operator’s control, Int J Nonlinear Sci Numer Simul, 395-398 (2002), 3-4:
[10] Dzul, A.; Lozano, R.; Castillo, P., Adaptive control for a radio-controlled helicopter in a vertical flying stand, Int J Adapt Control Signal Proc, 18, 473-485 (2004) · Zbl 1055.93060
[11] Fradkov, A. L., Synthesis of an adaptive system for linear plant stabilization, Autom Remote Control, 35, 12, 1960-1966 (1974) · Zbl 0307.93024
[12] Fradkov, A. L., Speed-gradient scheme and its applications in adaptive control, Autom Remote Control, 40, 9, 1333-1342 (1979) · Zbl 0434.93036
[13] Fradkov, A. L., Adaptive Control in Large-scale Systems (1990), Nauka: Nauka Moscow, in Russian · Zbl 0732.93046
[14] FradkovAL; NijmeijerH, MarkovA., Adaptive observerbased synchronization for communication, Int J Bifurcation Chaos, 10, 12, 2807-2813 (2000) · Zbl 0972.93005
[15] Fradkov, A. L., Passification of nonsquare linear systems and Feedback Kalman-Yakubovich-Popov Lemma, Eur J Control, 9, 11, 573-582 (2003)
[16] Fradkov, A. L.; Andrievsky, B., Combined adaptive controller for UAV guidance, Eur J Control, 11, 1, 71-79 (2005) · Zbl 1293.93445
[17] Fradkov, A. L.; Andrievsky, B.; Peaucelle, D., Adaptive passification-based fault-tolerant flight control, (Proceedings 17th IFAC Symposium on Automatic Control in Aerospace (ACA’2007). Proceedings 17th IFAC Symposium on Automatic Control in Aerospace (ACA’2007), Toulouse, France (2007)), June 25-29 · Zbl 1293.93444
[18] Fradkov, A. L.; Miroshnik, I. V.; Nikiforov, V. O., Nonlinear and Adaptive Control of Complex Systems (1999), Kluwer: Kluwer Dordrecht · Zbl 0934.93002
[19] Furuta, F.; Yamakita, M.; Kobayasji, S.; Nishimura, M., A new inverted pendulum apparatus for education, (Proceedings of IFAC Symposium on Advances Control Education. Proceedings of IFAC Symposium on Advances Control Education, Tokyo (1994)), 191-194
[20] Ioannou, P.; Fidan, B., Adaptive Control Tutoria (2006), SIAM: SIAM Philadelphia · Zbl 1116.93001
[21] Iwai, Z.; Mizumoto, I., Robust and simple adaptive control systems, Int J Control, 55, 1453-1470 (1992) · Zbl 0761.93043
[22] Kutay, A. T.; Calise, A. J.; Idan, M.; Hovakimyan, N., Experimental results on adaptive output feedback control using a laboratory model helicopter, IEEE Trans Contr Syst Technol, 13, 2, 196-202 (2005)
[23] LAAS-CNRS. http://www.laas.fr; LAAS-CNRS. http://www.laas.fr
[24] Landau, J. D., Adaptive Control Systems The Model Reference Approach (1979), Dekker: Dekker New York · Zbl 0475.93002
[25] Quanser Co. http://www.quanser.com/choice.asp; Quanser Co. http://www.quanser.com/choice.asp
[26] Schmid, C., An autonomous self-rising pendulum Invited paper, (Proceedings of the European Control Conference (ECC’99). Proceedings of the European Control Conference (ECC’99), Karlsruhe (1999))
[27] User’s Guide, Simulink. The MathWorks Inc, Natic, MA, 1992; User’s Guide, Simulink. The MathWorks Inc, Natic, MA, 1992
[28] Spong, M. W.; Block, D., The Pendubot: a mechatronic systems for control research and education, (Proceedings of the 35th IEEE Conference Decision and Control (CDC’96). Proceedings of the 35th IEEE Conference Decision and Control (CDC’96), New Orleans, USA (1996)), 555-556
[29] Tanaka, K.; Othake, H.; Wang, O., A practical design approach to stabilization of a 3-DOF RC Helicopter, IEEE Trans Contr Syst Technol, 12, 2, 315-325 (2004)
[30] Utkin, V. I., Optimization and Control using Sliding Modes (1992), Springer-Verlag: Springer-Verlag London · Zbl 0748.93044
[31] User’s Guide, WinCon. The Quanser Consulting Inc., 1999; User’s Guide, WinCon. The Quanser Consulting Inc., 1999
[32] Xiaofei, W.; Adami, T.; Campbell, J.; Jianwei, G.; Zhu, J. J., A nonlinear flight controller design for a UFO by trajectory linearization method, (Proceedings of the 34th Southeastern Symposium on System Theory (2002)), 103-107
[33] Ye, D.; Yang, G. H., Adaptive fault-tolerant tracking control against actuator faults with application to flight control, IEEE Trans Contr Syst Technol, 14, 6, 1088-1096 (2006)
[34] Zhou, K.; Doyle, J., Essentials of Robust Control (1998), Prentice- Hall: Prentice- Hall New Jersey
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.