×

What can we learn by combining the skew spectrum and the power spectrum? (English) Zbl 1492.85011


MSC:

85A15 Galactic and stellar structure
30D40 Cluster sets, prime ends, boundary behavior
28C20 Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.)
81V80 Quantum optics
83F05 Relativistic cosmology
47A10 Spectrum, resolvent
35B20 Perturbations in context of PDEs
83-10 Mathematical modeling or simulation for problems pertaining to relativity and gravitational theory

References:

[1] Planck collaboration, Planck 2018 results. VI. Cosmological parameters, [1807.06209]
[2] K. Abazajian et al., CMB-S4 science case, reference design and project plan, [1907.04473]
[3] DESI collaboration, The DESI experiment part I: science, targeting and survey design, [1611.00036]
[4] L. Amendola et al., 2018 Cosmology and fundamental physics with the Euclid satellite, https://doi.org/10.1007/s41114-017-0010-3 Living Rev. Rel.21 2 [1606.00180] · doi:10.1007/s41114-017-0010-3
[5] LSST Science and LSST Project collaborations, LSST science book, version 2.0, [0912.0201]
[6] S. Matarrese, L. Verde and A.F. Heavens, 1997 Large scale bias in the universe: bispectrum method, https://doi.org/10.1093/mnras/290.4.651 Mon. Not. Roy. Astron. Soc.290 651 [astro-ph/9706059] · doi:10.1093/mnras/290.4.651
[7] L. Verde, A.F. Heavens, S. Matarrese and L. Moscardini, 1998 Large scale bias in the universe. 2. Redshift space bispectrum, https://doi.org/10.1046/j.1365-8711.1998.01937.x Mon. Not. Roy. Astron. Soc.300 747 [astro-ph/9806028] · doi:10.1046/j.1365-8711.1998.01937.x
[8] R. Scoccimarro, 2000 The bispectrum: from theory to observations, https://doi.org/10.1086/317248 Astrophys. J.544 597 [astro-ph/0004086] · doi:10.1086/317248
[9] E. Sefusatti, M. Crocce, S. Pueblas and R. Scoccimarro, 2006 Cosmology and the bispectrum, https://doi.org/10.1103/PhysRevD.74.023522 Phys. Rev. D74 023522 [astro-ph/0604505] · doi:10.1103/PhysRevD.74.023522
[10] K. Hoffmann, J. Bel, E. Gaztañaga, M. Crocce, P. Fosalba and F.J. Castander, 2015 Measuring the growth of matter fluctuations with third-order galaxy correlations, https://doi.org/10.1093/mnras/stu2492 Mon. Not. Roy. Astron. Soc.447 1724 [1403.1259] · doi:10.1093/mnras/stu2492
[11] R. Scoccimarro, H.A. Feldman, J.N. Fry and J.A. Frieman, 2001 The bispectrum of IRAS redshift catalogs, https://doi.org/10.1086/318284 Astrophys. J.546 652 [astro-ph/0004087] · doi:10.1086/318284
[12] L. Verde et al., 2002 The 2dF galaxy redshift survey: the bias of galaxies and the density of the Universe, https://doi.org/10.1046/j.1365-8711.2002.05620.x Mon. Not. Roy. Astron. Soc.335 432 [astro-ph/0112161] · doi:10.1046/j.1365-8711.2002.05620.x
[13] WiggleZ collaboration, 2013 The WiggleZ dark energy survey: constraining galaxy bias and cosmic growth with 3-point correlation functions, https://doi.org/10.1093/mnras/stt520 Mon. Not. Roy. Astron. Soc.432 2654 [1303.6644] · doi:10.1093/mnras/stt520
[14] H. Gil-Marín et al., 2015 The power spectrum and bispectrum of SDSS DR11 BOSS galaxies — I. Bias and gravity, https://doi.org/10.1093/mnras/stv961 Mon. Not. Roy. Astron. Soc.451 539 [1407.5668] · doi:10.1093/mnras/stv961
[15] H. Gil-Marín et al., 2015 The power spectrum and bispectrum of SDSS DR11 BOSS galaxies — II. Cosmological interpretation, https://doi.org/10.1093/mnras/stv1359 Mon. Not. Roy. Astron. Soc.452 1914 [1408.0027] · doi:10.1093/mnras/stv1359
[16] H. Gil-Marín et al., 2017 The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: RSD measurement from the power spectrum and bispectrum of the DR12 BOSS galaxies, https://doi.org/10.1093/mnras/stw2679 Mon. Not. Roy. Astron. Soc.465 1757 [1606.00439] · doi:10.1093/mnras/stw2679
[17] A. Eggemeier, R. Scoccimarro and R.E. Smith, 2019 Bias loop corrections to the galaxy bispectrum, https://doi.org/10.1103/PhysRevD.99.123514 Phys. Rev. D99 123514 [1812.03208] · doi:10.1103/PhysRevD.99.123514
[18] M. Colavincenzo et al., 2019 Comparing approximate methods for mock catalogues and covariance matrices — III: bispectrum, https://doi.org/10.1093/mnras/sty2964 Mon. Not. Roy. Astron. Soc.482 4883 [1806.09499] · doi:10.1093/mnras/sty2964
[19] C.-T. Chiang, C. Wagner, F. Schmidt and E. Komatsu, 2014 Position-dependent power spectrum of the large-scale structure: a novel method to measure the squeezed-limit bispectrum J. Cosmol. Astropart. Phys.2014 05 048 [1403.3411]
[20] A. Cooray, 2001 Squared temperature-temperature power spectrum as a probe of the CMB bispectrum, https://doi.org/10.1103/PhysRevD.64.043516 Phys. Rev. D64 043516 [astro-ph/0105415] · doi:10.1103/PhysRevD.64.043516
[21] D. Munshi and A. Heavens, 2010 A new approach to probing primordial non-gaussianity, https://doi.org/10.1111/j.1365-2966.2009.15820.x Mon. Not. Roy. Astron. Soc.401 2406 [0904.4478] · doi:10.1111/j.1365-2966.2009.15820.x
[22] G. Pratten and D. Munshi, 2012 Non-gaussianity in large scale structure and Minkowski functionals, https://doi.org/10.1111/j.1365-2966.2012.21103.x Mon. Not. Roy. Astron. Soc.423 3209 [1108.1985] · doi:10.1111/j.1365-2966.2012.21103.x
[23] M. Schmittfull, T. Baldauf and U. Seljak, 2015 Near optimal bispectrum estimators for large-scale structure, https://doi.org/10.1103/PhysRevD.91.043530 Phys. Rev. D91 043530 [1411.6595] · doi:10.1103/PhysRevD.91.043530
[24] K.C. Chan and L. Blot, 2017 Assessment of the information content of the power spectrum and bispectrum, https://doi.org/10.1103/PhysRevD.96.023528 Phys. Rev. D96 023528 [1610.06585] · doi:10.1103/PhysRevD.96.023528
[25] D. Munshi and P. Coles, 2017 The integrated bispectrum and beyond J. Cosmol. Astropart. Phys.2017 02 010 [1608.04345]
[26] A. Moradinezhad Dizgah, H. Lee, M. Schmittfull and C. Dvorkin, 2020 Capturing non-gaussianity of the large-scale structure with weighted skew-spectra J. Cosmol. Astropart. Phys.2020 04 011 [1911.05763] · Zbl 1491.83060
[27] F. Bernardeau, 1996 The large scale gravitational bias from the quasilinear regime Astron Astrophys.312 11 [astro-ph/9602072]
[28] J.E. Pollack, R.E. Smith and C. Porciani, 2014 A new method to measure galaxy bias, https://doi.org/10.1093/mnras/stu322 Mon. Not. Roy. Astron. Soc.440 555 [1309.0504] · doi:10.1093/mnras/stu322
[29] C.-T. Chiang, C. Wagner, A.G. Sánchez, F. Schmidt and E. Komatsu, 2015 Position-dependent correlation function from the SDSS-III baryon oscillation spectroscopic survey data release 10 CMASS Sample J. Cosmol. Astropart. Phys.2015 09 028 [1504.03322]
[30] S. Matarrese and L. Verde, 2008 The effect of primordial non-Gaussianity on halo bias, https://doi.org/10.1086/587840 Astrophys. J. Lett.677 L77 [0801.4826] · doi:10.1086/587840
[31] D.S. Salopek and J.R. Bond, 1990 Nonlinear evolution of long wavelength metric fluctuations in inflationary models, https://doi.org/10.1103/PhysRevD.42.3936 Phys. Rev. D42 3936 · doi:10.1103/PhysRevD.42.3936
[32] A. Gangui, F. Lucchin, S. Matarrese and S. Mollerach, 1994 The three point correlation function of the cosmic microwave background in inflationary models, https://doi.org/10.1086/174421 Astrophys. J.430 447 [astro-ph/9312033] · doi:10.1086/174421
[33] L. Verde, R. Jimenez, M. Kamionkowski and S. Matarrese, 2001 Tests for primordial nonGaussianity, https://doi.org/10.1046/j.1365-8711.2001.04459.x Mon. Not. Roy. Astron. Soc.325 412 [astro-ph/0011180] · doi:10.1046/j.1365-8711.2001.04459.x
[34] E. Komatsu and D.N. Spergel, 2001 Acoustic signatures in the primary microwave background bispectrum, https://doi.org/10.1103/PhysRevD.63.063002 Phys. Rev. D63 063002 [astro-ph/0005036] · doi:10.1103/PhysRevD.63.063002
[35] D. Seery and J.E. Lidsey, 2005 Primordial non-Gaussianities in single field inflation J. Cosmol. Astropart. Phys.2005 06 003 [astro-ph/0503692]
[36] X. Chen, M.-x. Huang, S. Kachru and G. Shiu, 2007 Observational signatures and non-Gaussianities of general single field inflation J. Cosmol. Astropart. Phys.2007 01 002 [hep-th/0605045]
[37] L. Senatore, K.M. Smith and M. Zaldarriaga, 2010 Non-gaussianities in single field inflation and their optimal limits from the WMAP 5-year Data J. Cosmol. Astropart. Phys.2010 01 028 [0905.3746]
[38] F. Bernardeau, S. Colombi, E. Gaztanaga and R. Scoccimarro, 2002 Large scale structure of the universe and cosmological perturbation theory, https://doi.org/10.1016/S0370-1573(02)00135-7 Phys. Rept.367 1 [astro-ph/0112551] · Zbl 0996.85005 · doi:10.1016/S0370-1573(02)00135-7
[39] R. Scoccimarro and H.M.P. Couchman, 2001 A fitting formula for the nonlinear evolution of the bispectrum, https://doi.org/10.1046/j.1365-8711.2001.04281.x Mon. Not. Roy. Astron. Soc.325 1312 [astro-ph/0009427] · doi:10.1046/j.1365-8711.2001.04281.x
[40] H. Gil-Marin, C. Wagner, F. Fragkoudi, R. Jimenez and L. Verde, 2012 An improved fitting formula for the dark matter bispectrum J. Cosmol. Astropart. Phys.2012 02 047 [1111.4477]
[41] V. Desjacques, D. Jeong and F. Schmidt, 2018 Large-scale galaxy bias, https://doi.org/10.1016/j.physrep.2017.12.002 Phys. Rept.733 1 [1611.09787] · Zbl 1392.83093 · doi:10.1016/j.physrep.2017.12.002
[42] T. Baldauf, U. Seljak, V. Desjacques and P. McDonald, 2012 Evidence for quadratic tidal tensor bias from the halo bispectrum, https://doi.org/10.1103/PhysRevD.86.083540 Phys. Rev. D86 083540 [1201.4827] · doi:10.1103/PhysRevD.86.083540
[43] K.C. Chan, R. Scoccimarro and R.K. Sheth, 2012 Gravity and large-scale non-local bias, https://doi.org/10.1103/PhysRevD.85.083509 Phys. Rev. D85 083509 [1201.3614] · doi:10.1103/PhysRevD.85.083509
[44] R. Scoccimarro, H.M.P. Couchman and J.A. Frieman, 1999 The bispectrum as a signature of gravitational instability in redshift-space, https://doi.org/10.1086/307220 Astrophys. J.517 531 [astro-ph/9808305] · doi:10.1086/307220
[45] H. Gil-Marín, C. Wagner, J. Noreña, L. Verde and W. Percival, 2014 Dark matter and halo bispectrum in redshift space: theory and applications J. Cosmol. Astropart. Phys.2014 12 029 [1407.1836]
[46] M. Tellarini, A.J. Ross, G. Tasinato and D. Wands, 2016 Galaxy bispectrum, primordial non-Gaussianity and redshift space distortions J. Cosmol. Astropart. Phys.2016 06 014 [1603.06814]
[47] D. Gualdi and L. Verde, 2020 Galaxy redshift-space bispectrum: the importance of being anisotropic J. Cosmol. Astropart. Phys.2020 06 041 [2003.12075]
[48] F. Villaescusa-Navarro et al., The Quijote simulations, [1909.05273]
[49] V. Springel, 2005 The cosmological simulation code GADGET-2, https://doi.org/10.1111/j.1365-2966.2005.09655.x Mon. Not. Roy. Astron. Soc.364 1105 [astro-ph/0505010] · doi:10.1111/j.1365-2966.2005.09655.x
[50] M. Davis, G. Efstathiou, C.S. Frenk and S.D.M. White, 1985 The evolution of large scale structure in a universe dominated by cold dark matter, https://doi.org/10.1086/163168 Astrophys. J.292 371 · doi:10.1086/163168
[51] R. Casas-Miranda, H.J. Mo, R.K. Sheth and G. Boerner, 2002 On the distribution of haloes, galaxies and mass, https://doi.org/10.1046/j.1365-8711.2002.05378.x Mon. Not. Roy. Astron. Soc.333 730 [astro-ph/0105008] · doi:10.1046/j.1365-8711.2002.05378.x
[52] C. Bonatto and E. Bica, 2011 From proper motions to star cluster dynamics: measuring velocity dispersion in deconvolved distribution functions, https://doi.org/10.1111/j.1365-2966.2011.18699.x Mon. Not. Roy. Astron. Soc.415 313 [1103.2292] · doi:10.1111/j.1365-2966.2011.18699.x
[53] J. Hartlap, P. Simon and P. Schneider, 2007 Why your model parameter confidences might be too optimistic: unbiased estimation of the inverse covariance matrix, https://doi.org/10.1051/0004-6361:20066170 Astron. Astrophys.464 399 [astro-ph/0608064] · doi:10.1051/0004-6361:20066170
[54] A. Lewis and S. Bridle, 2002 Cosmological parameters from CMB and other data: a monte carlo approach, https://doi.org/10.1103/PhysRevD.66.103511 Phys. Rev. D66 103511 [astro-ph/0205436] · doi:10.1103/PhysRevD.66.103511
[55] J. Carron, 2013 On the assumption of gaussianity for cosmological two-point statistics and parameter dependent covariance matrices, https://doi.org/10.1051/0004-6361/201220538 Astron. Astrophys.551 A88 [1204.4724] · doi:10.1051/0004-6361/201220538
[56] T. Lazeyras, C. Wagner, T. Baldauf and F. Schmidt, 2016 Precision measurement of the local bias of dark matter halos J. Cosmol. Astropart. Phys.2016 02 018 [1511.01096]
[57] N. Dalal, O. Dore, D. Huterer and A. Shirokov, 2008 The imprints of primordial non-Gaussianities on large-scale structure: scale dependent bias and abundance of virialized objects, https://doi.org/10.1103/PhysRevD.77.123514 Phys. Rev. D77 123514 [0710.4560] · doi:10.1103/PhysRevD.77.123514
[58] M. Grossi et al., 2009 Large-scale non-Gaussian mass function and halo bias: tests on N-body simulations, https://doi.org/10.1111/j.1365-2966.2009.15150.x Mon. Not. Roy. Astron. Soc.398 321 [0902.2013] · doi:10.1111/j.1365-2966.2009.15150.x
[59] C. Wagner, L. Verde and L. Boubekeur, 2010 N-body simulations with generic non-Gaussian initial conditions I: power spectrum and halo mass function J. Cosmol. Astropart. Phys.2010 10 022 [1006.5793]
[60] P. McDonald, 2008 Primordial non-Gaussianity: large-scale structure signature in the perturbative bias model, https://doi.org/10.1103/PhysRevD.78.123519 Phys. Rev. D78 123519 [0806.1061] · doi:10.1103/PhysRevD.78.123519
[61] E. Sefusatti, M. Liguori, A.P.S. Yadav, M.G. Jackson and E. Pajer, 2009 Constraining running Non-Gaussianity J. Cosmol. Astropart. Phys.2009 12 022 [0906.0232]
[62] J.-P. Dai and J.-Q. Xia, 2020 Constraints on running of non-gaussianity from large scale structure probes, https://doi.org/10.1093/mnrasl/slz170 Mon. Not. Roy. Astron. Soc.491 L61 [1911.01329] · doi:10.1093/mnrasl/slz170
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.