×

Towards cosmological constraints from the compressed modal bispectrum: a robust comparison of real-space bispectrum estimators. (English) Zbl 1490.83085

Summary: Higher-order clustering statistics, like the galaxy bispectrum, can add complementary cosmological information to what is accessible with two-point statistics, like the power spectrum. While the standard way of measuring the bispectrum involves estimating a bispectrum value in a large number of Fourier triangle bins, the compressed modal bispectrum approximates the bispectrum as a linear combination of basis functions and estimates the expansion coefficients on the chosen basis. In this work, we compare the two estimators by using parallel pipelines to analyze the real-space halo bispectrum measured in a suite of \(N\)-body simulations corresponding to a total volume of \(\sim 1,000\,h^{-3}\,\mathrm{Gpc}^3\), with covariance matrices estimated from 10,000 mock halo catalogs. We find that the modal bispectrum yields constraints that are consistent and competitive with the standard bispectrum analysis: for the halo bias and shot noise parameters within the tree-level halo bispectrum model up to \(k_{\mathrm{max}} \approx 0.06\) (0.10) \(h\,\mathrm{Mpc}^{-1}\), only 6 (10) modal expansion coefficients are necessary to obtain constraints equivalent to the standard bispectrum estimator using \(\sim 20\) to 1,600 triangle bins, depending on the bin width. For this work, we have implemented a modal estimator pipeline using Markov Chain Monte Carlo simulations for the first time, and we discuss in detail how the parameter posteriors and modal expansion are robust to, or sensitive to, several user settings within the modal bispectrum pipeline. The combination of the highly efficient compression that is achieved and the large number of mock catalogs available allows us to quantify how our modal bispectrum constraints depend on the number of mocks that are used to estimate covariance matrices and the functional form of the likelihood.

MSC:

83F05 Relativistic cosmology
78A45 Diffraction, scattering
35P15 Estimates of eigenvalues in context of PDEs
81V70 Many-body theory; quantum Hall effect
81R20 Covariant wave equations in quantum theory, relativistic quantum mechanics
65C05 Monte Carlo methods

References:

[1] Gil-Marín, Héctor; Noreña, Jorge; Verde, Licia; Percival, Will J.; Wagner, Christian; Manera, Marc, The power spectrum and bispectrum of SDSS DR11 BOSS galaxies — I. Bias and gravity, Mon. Not. Roy. Astron. Soc., 451, 539-580 (2015) · doi:10.1093/mnras/stv961
[2] Gil-Marín, Héctor; Verde, Licia; Noreña, Jorge; Cuesta, Antonio J.; Samushia, Lado; Percival, Will J., The power spectrum and bispectrum of SDSS DR11 BOSS galaxies — II. Cosmological interpretation, Mon. Not. Roy. Astron. Soc., 452, 1914-1921 (2015) · doi:10.1093/mnras/stv1359
[3] Gil-Marín, Héctor; Percival, Will J.; Verde, Licia; Brownstein, Joel R.; Chuang, Chia-Hsun; Kitaura, Francisco-Shu, The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the power spectrum and bispectrum of the DR12 BOSS galaxies, Mon. Not. Roy. Astron. Soc., 465, 1757-1788 (2017) · doi:10.1093/mnras/stw2679
[4] Slepian, Zachary, Detection of baryon acoustic oscillation features in the large-scale three-point correlation function of SDSS BOSS DR12 CMASS galaxies, Mon. Not. Roy. Astron. Soc., 469, 1738-1751 (2017) · doi:10.1093/mnras/stx488
[5] Pearson, David W.; Samushia, Lado, A Detection of the Baryon Acoustic Oscillation features in the SDSS BOSS DR12 Galaxy Bispectrum, Mon. Not. Roy. Astron. Soc., 478, 4500-4512 (2018) · doi:10.1093/mnras/sty1266
[6] D.W. Pearson and L. Samushia, Erratum: A Detection of the Baryon Acoustic Oscillation Features in the SDSS BOSS DR12 Galaxy Bispectrum, Mon. Not. Roy. Astron. Soc.483 (2018) 915. · doi:10.1093/mnras/sty3173
[7] Sugiyama, Naonori S.; Saito, Shun; Beutler, Florian; Seo, Hee-Jong, A complete FFT-based decomposition formalism for the redshift-space bispectrum, Mon. Not. Roy. Astron. Soc., 484, 364-384 (2019) · doi:10.1093/mnras/sty3249
[8] DESI Collaboration; Levi, Michael, The DESI Experiment, a whitepaper for Snowmass 2013 (2013)
[9] EUCLID Collaboration; Laureijs, R., Euclid Definition Study Report (2011)
[10] Doré, Olivier, Cosmology with the SPHEREX All-Sky Spectral Survey (2014)
[11] Spergel, D., Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report (2015)
[12] Chan, Kwan Chuen; Blot, Linda, Assessment of the Information Content of the Power Spectrum and Bispectrum, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.023528
[13] Byun, Joyce; Eggemeier, Alexander; Regan, Donough; Seery, David; Smith, Robert E., Towards optimal cosmological parameter recovery from compressed bispectrum statistics, Mon. Not. Roy. Astron. Soc., 471, 1581-1618 (2017) · doi:10.1093/mnras/stx1681
[14] Song, Yong-Seon; Taruya, Atsushi; Oka, Akira, Cosmology with anisotropic galaxy clustering from the combination of power spectrum and bispectrum, JCAP, 08 (2015) · doi:10.1088/1475-7516/2015/08/007
[15] Gagrani, Praful; Samushia, Lado, Information Content of the Angular Multipoles of Redshift-Space Galaxy Bispectrum, Mon. Not. Roy. Astron. Soc., 467, 928-935 (2017) · doi:10.1093/mnras/stx135
[16] Yankelevich, Victoria; Porciani, Cristiano, Cosmological information in the redshift-space bispectrum, Mon. Not. Roy. Astron. Soc., 483, 2078-2099 (2019) · doi:10.1093/mnras/sty3143
[17] Gualdi, Davide; Verde, Licia, Galaxy redshift-space bispectrum: the Importance of Being Anisotropic, JCAP, 06 (2020) · doi:10.1088/1475-7516/2020/06/041
[18] Agarwal, Nishant; Desjacques, Vincent; Jeong, Donghui; Schmidt, Fabian, Information content in the redshift-space galaxy power spectrum and bispectrum, JCAP, 03 (2021) · Zbl 1484.83094 · doi:10.1088/1475-7516/2021/03/021
[19] Yamauchi, Daisuke; Yokoyama, Shuichiro; Tashiro, Hiroyuki, Constraining modified theories of gravity with the galaxy bispectrum, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.123516
[20] Bose, Benjamin; Taruya, Atsushi, The one-loop matter bispectrum as a probe of gravity and dark energy, JCAP, 10 (2018) · doi:10.1088/1475-7516/2018/10/019
[21] Bose, Benjamin; Byun, Joyce; Lacasa, Fabien; Moradinezhad Dizgah, Azadeh; Lombriser, Lucas, Modelling the matter bispectrum at small scales in modified gravity, JCAP, 02 (2020) · doi:10.1088/1475-7516/2020/02/025
[22] Tellarini, Matteo; Ross, Ashley J.; Tasinato, Gianmassimo; Wands, David, Galaxy bispectrum, primordial non-Gaussianity and redshift space distortions, JCAP, 06 (2016) · doi:10.1088/1475-7516/2016/06/014
[23] Karagiannis, Dionysios; Lazanu, Andrei; Liguori, Michele; Raccanelli, Alvise; Bartolo, Nicola; Verde, Licia, Constraining primordial non-Gaussianity with bispectrum and power spectrum from upcoming optical and radio surveys, Mon. Not. Roy. Astron. Soc., 478, 1341-1376 (2018) · doi:10.1093/mnras/sty1029
[24] Ruggeri, Rossana; Castorina, Emanuele; Carbone, Carmelita; Sefusatti, Emiliano, DEMNUni: Massive neutrinos and the bispectrum of large scale structures, JCAP, 03 (2018) · doi:10.1088/1475-7516/2018/03/003
[25] Hahn, ChangHoon; Villaescusa-Navarro, Francisco; Castorina, Emanuele; Scoccimarro, Roman, Constraining M_ν with the bispectrum. Part I. Breaking parameter degeneracies, JCAP, 03 (2020) · doi:10.1088/1475-7516/2020/03/040
[26] Monaco, Pierluigi, Approximate methods for the generation of dark matter halo catalogs in the age of precision cosmology, Galaxies, 4, 53 (2016) · doi:10.3390/galaxies4040053
[27] Colavincenzo, Manuel, Comparing approximate methods for mock catalogues and covariance matrices — III: bispectrum, Mon. Not. Roy. Astron. Soc., 482, 4883-4905 (2019) · doi:10.1093/mnras/sty2964
[28] Joachimi, Benjamin, Non-linear shrinkage estimation of large-scale structure covariance, Mon. Not. Roy. Astron. Soc., 466, L83 (2017) · doi:10.1093/mnrasl/slw240
[29] O. Friedrich and T. Eifler, Precision matrix expansion - efficient use of numerical simulations in estimating errors on cosmological parameters, Mon. Not. Roy. Astron. Soc.473 (2018) 4150 [1703.07786]. · doi:10.1093/mnras/stx2566
[30] Hall, Alex; Taylor, Andy, A Bayesian method for combining theoretical and simulated covariance matrices for large-scale structure surveys, Mon. Not. Roy. Astron. Soc., 483, 189-207 (2019) · doi:10.1093/mnras/sty3102
[31] Pearson, David W.; Samushia, Lado, Estimating the power spectrum covariance matrix with fewer mock samples, Mon. Not. Roy. Astron. Soc., 457, 993-999 (2016) · doi:10.1093/mnras/stw062
[32] Howlett, Cullan; Percival, Will J., Galaxy two-point covariance matrix estimation for next generation surveys, Mon. Not. Roy. Astron. Soc., 472, 4935-4952 (2017) · doi:10.1093/mnras/stx2342
[33] Mohammed, Irshad; Seljak, Uros; Vlah, Zvonimir, Perturbative approach to covariance matrix of the matter power spectrum, Mon. Not. Roy. Astron. Soc., 466, 780-797 (2017) · doi:10.1093/mnras/stw3196
[34] Sugiyama, Naonori S.; Saito, Shun; Beutler, Florian; Seo, Hee-Jong, Perturbation theory approach to predict the covariance matrices of the galaxy power spectrum and bispectrum in redshift space, Mon. Not. Roy. Astron. Soc., 497, 1684-1711 (2020) · doi:10.1093/mnras/staa1940
[35] Wadekar, Digvijay; Scoccimarro, Roman, Galaxy power spectrum multipoles covariance in perturbation theory, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.123517
[36] Taruya, Atsushi; Nishimichi, Takahiro; Jeong, Donghui, Covariance of the matter power spectrum including the survey window function effect: N -body simulations versus fifth-order perturbation theory on grids, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.023501
[37] Slepian, Zachary; Eisenstein, Daniel J., Computing the three-point correlation function of galaxies in 𝒪(N^2) time, Mon. Not. Roy. Astron. Soc., 454, 4142-4158 (2015) · doi:10.1093/mnras/stv2119
[38] Slepian, Zachary, The large-scale three-point correlation function of the SDSS BOSS DR12 CMASS galaxies, Mon. Not. Roy. Astron. Soc., 468, 1070-1083 (2017) · doi:10.1093/mnras/stw3234
[39] Slepian, Zachary; Eisenstein, Daniel J., A practical computational method for the anisotropic redshift-space three-point correlation function, Mon. Not. Roy. Astron. Soc., 478, 1468-1483 (2018) · doi:10.1093/mnras/sty1063
[40] Gualdi, Davide; Manera, Marc; Joachimi, Benjamin; Lahav, Ofer, Maximal compression of the redshift space galaxy power spectrum and bispectrum, Mon. Not. Roy. Astron. Soc., 476, 4045-4070 (2018) · doi:10.1093/mnras/sty261
[41] Gualdi, Davide; Gil-Marín, Héctor; Schuhmann, Robert L.; Manera, Marc; Joachimi, Benjamin; Lahav, Ofer, Enhancing BOSS bispectrum cosmological constraints with maximal compression, Mon. Not. Roy. Astron. Soc., 484, 3713-3730 (2019) · doi:10.1093/mnras/stz051
[42] Heavens, Alan; Jimenez, Raul; Lahav, Ofer, Massive lossless data compression and multiple parameter estimation from galaxy spectra, Mon. Not. Roy. Astron. Soc., 317, 965 (2000) · doi:10.1046/j.1365-8711.2000.03692.x
[43] Heavens, Alan; Sellentin, Elena; Jaffe, Andrew, Extreme data compression while searching for new physics, Mon. Not. Roy. Astron. Soc., 498, 3440-3451 (2020) · doi:10.1093/mnras/staa2589
[44] Philcox, Oliver H. E.; Ivanov, Mikhail M.; Zaldarriaga, Matias; Simonovic, Marko; Schmittfull, Marcel, Fewer Mocks and Less Noise: Reducing the Dimensionality of Cosmological Observables with Subspace Projections, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.043508
[45] Gualdi, Davide; Gil-Marín, Héctor; Manera, Marc; Joachimi, Benjamin; Lahav, Ofer, Geometrical compression: a new method to enhance the BOSS galaxy bispectrum monopole constraints, Mon. Not. Roy. Astron. Soc., 484, L29-L34 (2019) · doi:10.1093/mnrasl/sly242
[46] Gualdi, Davide; Gil-Marín, Héctor; Manera, Marc; Joachimi, Benjamin; Lahav, Ofer, GEOMAX: beyond linear compression for three-point galaxy clustering statistics, Mon. Not. Roy. Astron. Soc., 497, 776-792 (2020) · doi:10.1093/mnras/staa1941
[47] Pratten, Geraint; Munshi, Dipak, Non-Gaussianity in Large Scale Structure and Minkowski Functionals, Mon. Not. Roy. Astron. Soc., 423, 3209-3226 (2012) · doi:10.1111/j.1365-2966.2012.21103.x
[48] Schmittfull, Marcel; Baldauf, Tobias; Seljak, Uroš, Near optimal bispectrum estimators for large-scale structure, Phys. Rev. D, 91 (2015) · doi:10.1103/PhysRevD.91.043530
[49] Moradinezhad Dizgah, Azadeh; Lee, Hayden; Schmittfull, Marcel; Dvorkin, Cora, Capturing non-Gaussianity of the large-scale structure with weighted skew-spectra, JCAP, 04 (2020) · Zbl 1491.83060 · doi:10.1088/1475-7516/2020/04/011
[50] Chiang, Chi-Ting; Wagner, Christian; Schmidt, Fabian; Komatsu, Eiichiro, Position-dependent power spectrum of the large-scale structure: a novel method to measure the squeezed-limit bispectrum, JCAP, 05 (2014) · doi:10.1088/1475-7516/2014/05/048
[51] Chiang, Chi-Ting; Wagner, Christian; Sánchez, Ariel G.; Schmidt, Fabian; Komatsu, Eiichiro, Position-dependent correlation function from the SDSS-III Baryon Oscillation Spectroscopic Survey Data Release 10 CMASS Sample, JCAP, 09 (2015) · doi:10.1088/1475-7516/2015/9/028
[52] Chiang, Chi-TingPosition-dependent power spectrum: a new observable in the large-scale structure2015
[53] Obreschkow, Danail; Power, Chris; Bruderer, Martin; Bonvin, Camille, A Robust Measure of Cosmic Structure beyond the Power-Spectrum: Cosmic Filaments and the Temperature of Dark Matter, Astrophys. J., 762, 115 (2013) · doi:10.1088/0004-637X/762/2/115
[54] Wolstenhulme, Richard; Bonvin, Camille; Obreschkow, Danail, Three-point Phase Correlations: a new Measure of Nonlinear Large-scale Structure, Astrophys. J., 804, 132 (2015) · doi:10.1088/0004-637X/804/2/132
[55] Eggemeier, Alexander; Battefeld, Thorsten; Smith, Robert E.; Niemeyer, Jens, The Anisotropic Line Correlation Function as a Probe of Anisotropies in Galaxy Surveys, Mon. Not. Roy. Astron. Soc., 453, 797-809 (2015) · doi:10.1093/mnras/stv1602
[56] Eggemeier, Alexander; Smith, Robert E., Cosmology with Phase Statistics: Parameter Forecasts and Detectability of BAO, Mon. Not. Roy. Astron. Soc., 466, 2496-2516 (2017) · doi:10.1093/mnras/stw3249
[57] Franco, Felipe O.; Bonvin, Camille; Obreschkow, Danail; Ali, Kamran; Byun, Joyce, Probing redshift-space distortions with phase correlations, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.103530
[58] Ali, Kamran; Obreschkow, Danail; Howlett, Cullan; Bonvin, Camille; Llinares, Claudio; Franco, Felipe Oliveira, Cosmological Constraints from Fourier Phase Statistics, Mon. Not. Roy. Astron. Soc., 479, 2743-2753 (2018) · doi:10.1093/mnras/sty1696
[59] Byun, Joyce; Franco, Felipe Oliveira; Howlett, Cullan; Bonvin, Camille; Obreschkow, Danail, Constraining the growth rate of structure with phase correlations, Mon. Not. Roy. Astron. Soc., 497, 1765-1790 (2020) · doi:10.1093/mnras/staa2020
[60] Fergusson, J. R.; Liguori, M.; Shellard, E. P. S., General CMB and Primordial Bispectrum Estimation I: Mode Expansion, Map-Making and Measures of f_NL, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.023502
[61] Fergusson, J. R.; Liguori, M.; Shellard, E. P. S., The CMB Bispectrum, JCAP, 12 (2012) · doi:10.1088/1475-7516/2012/12/032
[62] Planck Collaboration; Ade, P. A. R., Planck 2013 Results. XXIV. Constraints on primordial non-Gaussianity, Astron. Astrophys., 571, A24 (2014) · doi:10.1051/0004-6361/201321554
[63] Fergusson, J. R.; Regan, D. M.; Shellard, E. P. S., Rapid Separable Analysis of Higher Order Correlators in Large Scale Structure, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.063511
[64] Regan, D. M.; Schmittfull, M. M.; Shellard, E. P. S.; Fergusson, J. R., Universal Non-Gaussian Initial Conditions for N-body Simulations, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.123524
[65] Schmittfull, M. M.; Regan, D. M.; Shellard, E. P. S., Fast Estimation of Gravitational and Primordial Bispectra in Large Scale Structures, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.063512
[66] Lazanu, Andrei; Giannantonio, Tommaso; Schmittfull, Marcel; Shellard, E. P. S., Matter bispectrum of large-scale structure: Three-dimensional comparison between theoretical models and numerical simulations, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.083517
[67] Lazanu, Andrei; Giannantonio, Tommaso; Schmittfull, Marcel; Shellard, E. P. S., Matter bispectrum of large-scale structure with Gaussian and non-Gaussian initial conditions: Halo models, perturbation theory, and a three-shape model, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.083511
[68] Hung, Johnathan; Fergusson, James R.; Shellard, E. P. S., Advancing the matter bispectrum estimation of large-scale structure: a comparison of dark matter codes (2019)
[69] Hung, Johnathan; Manera, Marc; Shellard, E. P. S., Advancing the matter bispectrum estimation of large-scale structure: fast prescriptions for galaxy mock catalogues (2019)
[70] Regan, Donough, An Inventory of Bispectrum Estimators for Redshift Space Distortions, JCAP, 12 (2017) · Zbl 1515.83030 · doi:10.1088/1475-7516/2017/12/020
[71] Oddo, Andrea; Sefusatti, Emiliano; Porciani, Cristiano; Monaco, Pierluigi; Sánchez, Ariel G., Toward a robust inference method for the galaxy bispectrum: likelihood function and model selection, JCAP, 03 (2020) · doi:10.1088/1475-7516/2020/03/056
[72] Babich, Daniel, Optimal estimation of non-Gaussianity, Phys. Rev. D, 72 (2005) · doi:10.1103/PhysRevD.72.043003
[73] Hahn, T., CUBA: A Library for multidimensional numerical integration, Comput. Phys. Commun., 168, 78-95 (2005) · Zbl 1196.65052 · doi:10.1016/j.cpc.2005.01.010
[74] Hahn, T.; Fiala, L.; Lokajicek, M.; Tumova, N., Concurrent Cuba, J. Phys. Conf. Ser., 608 (2015) · doi:10.1088/1742-6596/608/1/012066
[75] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes in Fortran 77: the Art of Scientific Computing, second edition, vol. 1 (1996). · Zbl 0878.68049
[76] Grieb, Jan Niklas; Sánchez, Ariel G.; Salazar-Albornoz, Salvador; Dalla Vecchia, Claudio, Gaussian covariance matrices for anisotropic galaxy clustering measurements, Mon. Not. Roy. Astron. Soc., 457, 1577-1592 (2016) · doi:10.1093/mnras/stw065
[77] Monaco, P.; Theuns, T.; Taffoni, G., Pinocchio: pinpointing orbit-crossing collapsed hierarchical objects in a linear density field, Mon. Not. Roy. Astron. Soc., 331, 587 (2002) · doi:10.1046/j.1365-8711.2002.05162.x
[78] Monaco, P.; Sefusatti, E.; Borgani, S.; Crocce, M.; Fosalba, P.; Sheth, R. K., An accurate tool for the fast generation of dark matter halo catalogs, Mon. Not. Roy. Astron. Soc., 433, 2389-2402 (2013) · doi:10.1093/mnras/stt907
[79] Munari, Emiliano; Monaco, Pierluigi; Sefusatti, Emiliano; Castorina, Emanuele; Mohammad, Faizan G.; Anselmi, Stefano, Improving fast generation of halo catalogues with higher order Lagrangian perturbation theory, Mon. Not. Roy. Astron. Soc., 465, 4658-4677 (2017) · doi:10.1093/mnras/stw3085
[80] Sefusatti, Emiliano; Crocce, Martin; Scoccimarro, Roman; Couchman, Hugh, Accurate Estimators of Correlation Functions in Fourier Space, Mon. Not. Roy. Astron. Soc., 460, 3624-3636 (2016) · doi:10.1093/mnras/stw1229
[81] Sellentin, Elena; Heavens, Alan F., Parameter inference with estimated covariance matrices, Mon. Not. Roy. Astron. Soc., 456, L132-L136 (2016) · doi:10.1093/mnrasl/slv190
[82] G.M. Kaufmann, Some Bayesian Moment Formulae, Report No. 6710. Centre for Operations Research and Econometrics, Catholic University of Louvain, Heverlee (1967).
[83] T.W. Anderson, An Introduction to Multivariate Statistical Analysis, Wiley (2003). · Zbl 1039.62044
[84] Hartlap, J.; Simon, Patrick; Schneider, P., Why your model parameter confidences might be too optimistic: Unbiased estimation of the inverse covariance matrix, Astron. Astrophys., 464, 399 (2007) · doi:10.1051/0004-6361:20066170
[85] Foreman-Mackey, Daniel; Hogg, David W.; Lang, Dustin; Goodman, Jonathan, emcee: The MCMC Hammer, Publ. Astron. Soc. Pac., 125, 306-312 (2013) · doi:10.1086/670067
[86] Lewis, Antony, GetDist: a Python package for analysing Monte Carlo samples (2019)
[87] A. Oddo et al., Cosmological parameters from the likelihood analysis of the galaxy power spectrum and bispectrum in real space, in preparation. · Zbl 1487.83072
[88] D. Jeong, Cosmology with high (z>1) redshift galaxy surveys, Ph.D. thesis, The University of Texas at Austin, 2010.
[89] Watkinson, Catherine A.; Majumdar, Suman; Pritchard, Jonathan R.; Mondal, Rajesh, A fast estimator for the bispectrum and beyond — a practical method for measuring non-Gaussianity in 21-cm maps, Mon. Not. Roy. Astron. Soc., 472, 2436-2446 (2017) · doi:10.1093/mnras/stx2130
[90] Tegmark, Max; Taylor, Andy; Heavens, Alan, Karhunen-Loeve eigenvalue problems in cosmology: How should we tackle large data sets?, Astrophys. J., 480, 22 (1997) · doi:10.1086/303939
[91] Knox, Lloyd; Scoccimarro, Roman; Dodelson, Scott, The Impact of inhomogeneous reionization on cosmic microwave background anisotropy, Phys. Rev. Lett., 81, 2004-2007 (1998) · doi:10.1103/PhysRevLett.81.2004
[92] Amara, Adam; Refregier, Alexandre, Systematic Bias in Cosmic Shear: Beyond the Fisher Matrix, Mon. Not. Roy. Astron. Soc., 391, 228-236 (2008) · doi:10.1111/j.1365-2966.2008.13880.x
[93] Blot, Linda; Corasaniti, Pier Stefano; Amendola, Luca; Kitching, Thomas D., Non-Linear Matter Power Spectrum Covariance Matrix Errors and Cosmological Parameter Uncertainties, Mon. Not. Roy. Astron. Soc., 458, 4462-4470 (2016) · doi:10.1093/mnras/stw604
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.