×

Weak lensing trispectrum and Kurt-spectra. (English) Zbl 1518.83100

MSC:

83F05 Relativistic cosmology
35B20 Perturbations in context of PDEs
78A45 Diffraction, scattering
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
60G35 Signal detection and filtering (aspects of stochastic processes)
83-10 Mathematical modeling or simulation for problems pertaining to relativity and gravitational theory

References:

[1] Lesgourgues, Julien; Pastor, Sergio, Massive neutrinos and cosmology, Phys. Rept., 429, 307-379 (2006) · doi:10.1016/j.physrep.2006.04.001
[2] Aihara, Hiroaki, The Hyper Suprime-Cam SSP Survey: Overview and Survey Design, Publ. Astron. Soc. Jap., 70, S4 (2018) · doi:10.1093/pasj/psx066
[3] DES Collaboration; Abbott, T., Cosmology from cosmic shear with Dark Energy Survey Science Verification data, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.022001
[4] DESI Collaboration; Aghamousa, Amir, The DESI Experiment Part I: Science,Targeting, and Survey Design (2016)
[5] Tamura, Naoyuki; Evans, Christopher J.; Simard, Luc; Takami, Hideki, Prime Focus Spectrograph (PFS) for the Subaru Telescope: Overview, recent progress, and future perspectives, Proc. SPIE Int. Soc. Opt. Eng., 9908 (2016) · doi:10.1117/12.2232103
[6] Kuijken, Konrad, Gravitational Lensing Analysis of the Kilo Degree Survey, Mon. Not. Roy. Astron. Soc., 454, 3500-3532 (2015) · doi:10.1093/mnras/stv2140
[7] EUCLID Collaboration; Laureijs, R., Euclid Definition Study Report (2011)
[8] Tyson, J. A.; Wittman, D. M.; Hennawi, J. F.; Spergel, D. N.; Cline, D. B., LSST: A Complementary probe of dark energy, Nucl. Phys. B Proc. Suppl., 124, 21-29 (2003) · doi:10.1016/S0920-5632(03)02073-5
[9] N.R. Council, New worlds, new horizons in astronomy and astrophysics, The National Academies Press, Washington, DC, U.S.A. (2010). · doi:10.17226/12951
[10] Riquelme, Mario A.; Spergel, David N., Separating the Weak Lensing and Kinetic SZ Effects from CMB Temperature Maps, Astrophys. J., 661, 672-677 (2007) · doi:10.1086/516774
[11] Munshi, D.; Valageas, P.; Van Waerbeke, Ludovic; Heavens, A., Cosmology with Weak Lensing Surveys, Phys. Rept., 462, 67-121 (2008) · doi:10.1016/j.physrep.2008.02.003
[12] Parroni, Carolina; Tollet, Édouard; Cardone, Vincenzo F.; Maoli, Roberto; Scaramella, Roberto, Higher-order statistics of shear field via a machine learning approach, Astron. Astrophys., 645, A123 (2021) · doi:10.1051/0004-6361/202038715
[13] Hu, Wayne, Angular trispectrum of the CMB, Phys. Rev. D, 64 (2001) · doi:10.1103/PhysRevD.64.083005
[14] Okamoto, Takemi; Hu, Wayne, CMB lensing reconstruction on the full sky, Phys. Rev. D, 67 (2003) · doi:10.1103/PhysRevD.67.083002
[15] Cooray, Asantha; Li, Chao; Melchiorri, Alessandro, The trispectrum of 21-cm background anisotropies as a probe of primordial non-Gaussianity, Phys. Rev. D, 77 (2008) · doi:10.1103/PhysRevD.77.103506
[16] Cooray, Asantha, 21-cm Background Anisotropies Can Discern Primordial Non-Gaussianity, Phys. Rev. Lett., 97 (2006) · doi:10.1103/PhysRevLett.97.261301
[17] Munshi, Dipak; Heavens, Alan; Cooray, Asantha; Smidt, Joseph; Coles, Peter; Serra, Paolo, New Optimised Estimators for the Primordial Trispectrum, Mon. Not. Roy. Astron. Soc., 412, 1993 (2011) · doi:10.1111/j.1365-2966.2010.18035.x
[18] Munshi, Dipak; Coles, Peter; Cooray, Asantha; Heavens, Alan; Smidt, Joseph, Primordial Non-Gaussianity from a Joint Analysis of Cosmic Microwave Background Temperature and Polarization, Mon. Not. Roy. Astron. Soc., 410, 1295 (2011) · doi:10.1111/j.1365-2966.2010.17527.x
[19] Planck Collaboration; Ade, P. A. R., Planck 2013 Results. XXIV. Constraints on primordial non-Gaussianity, Astron. Astrophys., 571, A24 (2014) · doi:10.1051/0004-6361/201321554
[20] Planck Collaboration; Ade, P. A. R., Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, Astron. Astrophys., 594, A17 (2016) · doi:10.1051/0004-6361/201525836
[21] Planck Collaboration; Akrami, Y., Planck 2018 results. IX. Constraints on primordial non-Gaussianity, Astron. Astrophys., 641, A9 (2020) · doi:10.1051/0004-6361/201935891
[22] Smith, Kendrick M.; Senatore, Leonardo; Zaldarriaga, Matias, Optimal analysis of the CMB trispectrum (2015)
[23] Smidt, Joseph; Cooray, Asantha; Amblard, Alexandre; Joudaki, Shahab; Munshi, Dipak; Santos, Mario G., A Constraint On the Integrated Mass Power Spectrum out to z = 1100 from Lensing of the Cosmic Microwave Background, Astrophys. J. Lett., 728, L1 (2011) · doi:10.1088/2041-8205/728/1/L1
[24] Planck Collaboration; Ade, P. A. R., Planck 2013 results. XVII. Gravitational lensing by large-scale structure, Astron. Astrophys., 571, A17 (2014) · doi:10.1051/0004-6361/201321543
[25] Bernardeau, F., The Large scale gravitational bias from the quasilinear regime, Astron. Astrophys., 312, 11-23 (1996)
[26] Munshi, Dipak; Melott, Adrian L.; Coles, Peter, Generalised cumulant correlators and hierarchical clustering (1998)
[27] Munshi, D.; McEwen, J. D., Higher order spectra of weak lensing convergence maps in parametrized theories of modified gravity, Mon. Not. Roy. Astron. Soc., 498, 5299-5316 (2020) · doi:10.1093/mnras/staa2706
[28] Lee, Hayden; Dvorkin, Cora, Cosmological Angular Trispectra and Non-Gaussian Covariance, JCAP, 05 (2020) · Zbl 1492.85019 · doi:10.1088/1475-7516/2020/05/044
[29] Gualdi, Davide; Novell, Sergi; Gil-Marín, Héctor; Verde, Licia, Matter trispectrum: theoretical modelling and comparison to N-body simulations, JCAP, 01 (2021) · Zbl 1490.83086 · doi:10.1088/1475-7516/2021/01/015
[30] Bertolini, Daniele; Schutz, Katelin; Solon, Mikhail P.; Zurek, Kathryn M., The Trispectrum in the Effective Field Theory of Large Scale Structure, JCAP, 06 (2016) · doi:10.1088/1475-7516/2016/06/052
[31] Steele, Theodore; Baldauf, Tobias, Precise Calibration of the One-Loop Trispectrum in the Effective Field Theory of Large Scale Structure, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.103518
[32] Cooray, Asantha; Sheth, Ravi K., Halo Models of Large Scale Structure, Phys. Rept., 372, 1-129 (2002) · Zbl 0999.85005 · doi:10.1016/S0370-1573(02)00276-4
[33] Munshi, Dipak; Coles, Peter, Weak lensing from strong clustering, Mon. Not. Roy. Astron. Soc., 313, 148 (2000) · doi:10.1046/j.1365-8711.2000.03190.x
[34] Alsing, Justin; Charnock, Tom; Feeney, Stephen; Wandelt, Benjamin, Fast likelihood-free cosmology with neural density estimators and active learning, Mon. Not. Roy. Astron. Soc., 488, 4440-4458 (2019) · doi:10.1093/mnras/stz1960
[35] Ramanah, Doogesh Kodi; Charnock, Tom; Lavaux, Guilhem, Painting halos from cosmic density fields of dark matter with physically motivated neural networks, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.043515
[36] Porqueres, Natalia; Heavens, Alan; Mortlock, Daniel; Lavaux, Guilhem, Lifting weak lensing degeneracies with a field-based likelihood, Mon. Not. Roy. Astron. Soc., 509, 3194-3202 (2021) · doi:10.1093/mnras/stab3234
[37] Taylor, Peter L.; Kitching, Thomas D.; Alsing, Justing; Wandelt, Benjamin D.; Feeney, Stephen M.; McEwen, Jason D., Cosmic Shear: Inference from Forward Models, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.023519
[38] Diaz Rivero, Ana; Dvorkin, Cora, Flow-Based Likelihoods for Non-Gaussian Inference, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.103507
[39] Allys, E.; Marchand, T.; Cardoso, J. -F.; Villaescusa-Navarro, F.; Ho, S.; Mallat, S., New Interpretable Statistics for Large Scale Structure Analysis and Generation, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.103506
[40] S. Mallat, Group invariant scattering, Commun. Pure Appl. Math.65 (2012) 1331 [1101.2286]. · Zbl 1282.47009 · doi:10.1002/cpa.21413
[41] Cheng, Sihao; Ting, Yuan-Sen; Ménard, Brice; Bruna, Joan, A new approach to observational cosmology using the scattering transform, Mon. Not. Roy. Astron. Soc., 499, 5902-5914 (2020) · doi:10.1093/mnras/staa3165
[42] Cheng, Sihao; Ménard, Brice, Weak lensing scattering transform: dark energy and neutrino mass sensitivity, Mon. Not. Roy. Astron. Soc., 507, 1012-1020 (2021) · doi:10.1093/mnras/stab2102
[43] A.K. Saydjari, S.K.N. Portillo, Z. Slepian, S. Kahraman, B. Burkhart and D.P. Finkbeiner, Classification of magnetohydrodynamic simulations using wavelet scattering transforms, Astrophys. J.910 (2021) 122 [2010.11963]. · doi:10.3847/1538-4357/abe46d
[44] Valogiannis, Georgios; Dvorkin, Cora, Towards an optimal estimation of cosmological parameters with the wavelet scattering transform, Phys. Rev. D, 105 (2022) · doi:10.1103/PhysRevD.105.103534
[45] Regaldo-Saint Blancard, Bruno; Levrier, François; Allys, Erwan; Bellomi, Elena; Boulanger, François, Statistical description of dust polarized emission from the diffuse interstellar medium - A RWST approach, Astron. Astrophys., 642, A217 (2020) · doi:10.1051/0004-6361/202038044
[46] Allys, E.; Levrier, F.; Zhang, S.; Colling, C.; Blancard, B. Regaldo-Saint; Boulanger, F., The RWST, a comprehensive statistical description of the non-Gaussian structures in the ISM, Astron. Astrophys., 629, A115 (2019) · doi:10.1051/0004-6361/201834975
[47] Munshi, Dipak; Valageas, Patrick; Barber, Andrew J., Weak lensing shear and aperture - mass from linear to non-linear scales, Mon. Not. Roy. Astron. Soc., 350, 77 (2004) · doi:10.1111/j.1365-2966.2004.07553.x
[48] Uhlemann, Cora; Pichon, Christophe; Codis, Sandrine; L’Huillier, Benjamin; Kim, Juhan; Bernardeau, Francis, Cylinders out of a top hat: counts-in-cells for projected densities, Mon. Not. Roy. Astron. Soc., 477, 2772-2785 (2018) · doi:10.1093/mnras/sty664
[49] Peel, Austin; Lin, Chieh-An; Lanusse, Francois; Leonard, Adrienne; Starck, Jean-Luc; Kilbinger, Martin, Cosmological constraints with weak lensing peak counts and second-order statistics in a large-field survey, Astron. Astrophys., 599, A79 (2017) · doi:10.1051/0004-6361/201629928
[50] Munshi, D.; Namikawa, T.; McEwen, J. D.; Kitching, T. D.; Bouchet, F. R., Morphology of weak lensing convergence maps, Mon. Not. Roy. Astron. Soc., 507, 1421-1433 (2021) · doi:10.1093/mnras/stab2101
[51] Chiang, Chi-Ting; Wagner, Christian; Sánchez, Ariel G.; Schmidt, Fabian; Komatsu, Eiichiro, Position-dependent correlation function from the SDSS-III Baryon Oscillation Spectroscopic Survey Data Release 10 CMASS Sample, JCAP, 09 (2015) · doi:10.1088/1475-7516/2015/9/028
[52] Drinkwater, Michael J., The WiggleZ Dark Energy Survey: Survey Design and First Data Release, Mon. Not. Roy. Astron. Soc., 401, 1429-1452 (2010) · doi:10.1111/j.1365-2966.2009.15754.x
[53] Desjacques, Vincent; Jeong, Donghui; Schmidt, Fabian, Large-Scale Galaxy Bias, Phys. Rept., 733, 1-193 (2018) · Zbl 1392.83093 · doi:10.1016/j.physrep.2017.12.002
[54] Mitsou, Ermis; Yoo, Jaiyul; Durrer, Ruth; Scaccabarozzi, Fulvio; Tansella, Vittorio, General and consistent statistics for cosmological observations, Phys. Rev. Res., 2 (2020) · doi:10.1103/PhysRevResearch.2.033004
[55] Regan, D. M.; Shellard, E. P. S.; Fergusson, J. R., General CMB and Primordial Trispectrum Estimation, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.023520
[56] Levi, Michele; Vlah, Zvonimir, Massive neutrinos in nonlinear large scale structure: A consistent perturbation theory (2016)
[57] Chen, Shu-Fan; Lee, Hayden; Dvorkin, Cora, Precise and accurate cosmology with CMB×LSS power spectra and bispectra, JCAP, 05 (2021) · Zbl 1485.85003 · doi:10.1088/1475-7516/2021/05/030
[58] Matsubara, Takahiko, Analytic Minkowski Functionals of the Cosmic Microwave Background: Second-order Non-Gaussianity with Bispectrum and Trispectrum, Phys. Rev. D, 81 (2010) · doi:10.1103/PhysRevD.81.083505
[59] Munshi, D.; Hu, B.; Matsubara, T.; Coles, P.; Heavens, A., Lensing-induced morphology changes in CMB temperature maps in modified gravity theories, JCAP, 04 (2016) · doi:10.1088/1475-7516/2016/04/056
[60] Assassi, Valentin; Simonović, Marko; Zaldarriaga, Matias, Efficient evaluation of angular power spectra and bispectra, JCAP, 11 (2017) · doi:10.1088/1475-7516/2017/11/054
[61] Grasshorn Gebhardt, Henry S.; Jeong, Donghui, Fast and accurate computation of projected two-point functions, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.023504
[62] Schöneberg, Nils; Simonović, Marko; Lesgourgues, Julien; Zaldarriaga, Matias, Beyond the traditional Line-of-Sight approach of cosmological angular statistics, JCAP, 10 (2018) · Zbl 1536.83202 · doi:10.1088/1475-7516/2018/10/047
[63] Hamilton, A. J. S., Uncorrelated modes of the nonlinear power spectrum, Mon. Not. Roy. Astron. Soc., 312, 257-284 (2000) · doi:10.1046/j.1365-8711.2000.03071.x
[64] Leistedt, B.; McEwen, J. D., Exact Wavelets on the Ball, IEEE Trans. Signal. Process., 60, 6257-6269 (2012) · Zbl 1393.94137 · doi:10.1109/TSP.2012.2215030
[65] Campagne, J. -E.; Neveu, J.; Plaszczynski, S., Angpow: a software for the fast computation of accurate tomographic power spectra, Astron. Astrophys., 602, A72 (2017) · doi:10.1051/0004-6361/201730399
[66] Slepian, Zachary, On decoupling the integrals of cosmological perturbation theory, Mon. Not. Roy. Astron. Soc., 507, 1337-1360 (2021) · doi:10.1093/mnras/staa1789
[67] Di Dio, Enea; Durrer, Ruth; Maartens, Roy; Montanari, Francesco; Umeh, Obinna, The Full-Sky Angular Bispectrum in Redshift Space, JCAP, 04 (2019) · doi:10.1088/1475-7516/2019/04/053
[68] Fang, Xiao; Krause, Elisabeth; Eifler, Tim; MacCrann, Niall, Beyond Limber: Efficient computation of angular power spectra for galaxy clustering and weak lensing, JCAP, 05 (2020) · Zbl 1491.83020 · doi:10.1088/1475-7516/2020/05/010
[69] Deshpande, Anurag C.; Kitching, Thomas D., Post-Limber Weak Lensing Bispectrum, Reduced Shear Correction, and Magnification Bias Correction, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.103531
[70] Grasshorn Gebhardt, Henry S.; Jeong, Donghui, Nonlinear redshift-space distortions in the harmonic-space galaxy power spectrum, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.083521
[71] Fang, Xiao; Eifler, Tim; Krause, Elisabeth, 2D-FFTLog: Efficient computation of real space covariance matrices for galaxy clustering and weak lensing, Mon. Not. Roy. Astron. Soc., 497, 2699-2714 (2020) · doi:10.1093/mnras/staa1726
[72] Montanari, Francesco; Camera, Stefano, Speeding up the detectability of the harmonic-space galaxy bispectrum, JCAP, 01 (2021) · doi:10.1088/1475-7516/2021/01/002
[73] Umeh, Obinna, Optimal computation of anisotropic galaxy three point correlation function multipoles using 2DFFTLOG formalism, JCAP, 05 (2021) · Zbl 1485.83185 · doi:10.1088/1475-7516/2021/05/035
[74] Limber, D. Nelson, The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field. II, Astrophys. J., 119, 655 (1954) · doi:10.1086/145870
[75] LoVerde, Marilena; Afshordi, Niayesh, Extended Limber Approximation, Phys. Rev. D, 78 (2008) · doi:10.1103/PhysRevD.78.123506
[76] Bernardeau, F.; Colombi, S.; Gaztanaga, E.; Scoccimarro, R., Large scale structure of the universe and cosmological perturbation theory, Phys. Rept., 367, 1-248 (2002) · Zbl 0996.85005 · doi:10.1016/S0370-1573(02)00135-7
[77] Goroff, M. H.; Grinstein, Benjamin; Rey, S. J.; Wise, Mark B., Coupling of Modes of Cosmological Mass Density Fluctuations, Astrophys. J., 311, 6-14 (1986) · doi:10.1086/164749
[78] Jain, Bhuvnesh; Bertschinger, Edmund, Second order power spectrum and nonlinear evolution at high redshift, Astrophys. J., 431, 495 (1994) · doi:10.1086/174502
[79] Gil-Marin, Hector; Wagner, Christian; Fragkoudi, Frantzeska; Jimenez, Raul; Verde, Licia, An improved fitting formula for the dark matter bispectrum, JCAP, 02 (2012) · doi:10.1088/1475-7516/2012/02/047
[80] Gualdi, Davide; Gil-Marín, H. éctor; Verde, Licia, Joint analysis of anisotropic power spectrum, bispectrum and trispectrum: application to N-body simulations, JCAP, 07 (2021) · doi:10.1088/1475-7516/2021/07/008
[81] Fry, James N., The Galaxy correlation hierarchy in perturbation theory, Astrophys. J., 279, 499-510 (1984) · doi:10.1086/161913
[82] J.N. Fry and P.J.E. Peebles, Statistical analysis of catalogs of extragalactic objects. IX. The four-point galaxy correlation function, Astrophys. J.221 (1978) 19. · doi:10.1086/156001
[83] Bernardeau, F.; Schaeffer, R., Halo correlations in nonlinear cosmic density fields, Astron. Astrophys., 349, 697-728 (1999)
[84] F. Bernardeau and R. Schaeffer, Galaxy correlations, matter correlations and biasing, Astron. Astrophys.255 (1992) 1.
[85] Coles, Peter; Melott, Adrian; Munshi, Dipak, Bias and hierarchical clustering, Astrophys. J. Lett., 521, L5 (1999) · doi:10.1086/312174
[86] Scoccimarro, Roman; Zaldarriaga, Matias; Hui, Lam, Power spectrum correlations induced by nonlinear clustering, Astrophys. J., 527, 1 (1999) · doi:10.1086/308059
[87] I. Szapudi and A.S. Szalay, Higher order statistics of the galaxy distribution using generating functions, Astrophys. J.408 (1993) 43. · doi:10.1086/172568
[88] P. Boschan, I. Szapudi and A.S. Szalay, On the accurate determination of the clustering hierarchy of galaxies, Astrophys. J. Suppl.93 (1994) 65. · doi:10.1086/192046
[89] Bernardeau, F.; Schaeffer, R., Halo correlations in nonlinear cosmic density fields, Astron. Astrophys., 349, 697-728 (1999)
[90] Munshi, Dipak; Jain, Bhuvnesh, The statistics of weak lensing at small angular scales: probability distribution function, Mon. Not. Roy. Astron. Soc., 318, 109 (2000) · doi:10.1046/j.1365-8711.2000.03694.x
[91] Munshi, Dipak; Jain, Bhuvnesh, Statistics of weak lensing at small angular scales: analytical predictions for lower order moments, Mon. Not. Roy. Astron. Soc., 322, 107 (2001) · doi:10.1046/j.1365-8711.2001.04069.x
[92] Barber, Andrew J.; Munshi, Dipak; Valageas, Patrick, From linear to nonlinear scales: analytical and numerical predictions for the weak lensing convergence, Mon. Not. Roy. Astron. Soc., 347, 667 (2004) · doi:10.1111/j.1365-2966.2004.07249.x
[93] Colombi, S., A “Skewed” lognormal approximation to the probability distribution function of the large scale density field, Astrophys. J. Lett., 435, L536-539 (1994) · doi:10.1086/174834
[94] Philcox, Oliver H. E.; Spergel, David N.; Villaescusa-Navarro, Francisco, Effective halo model: Creating a physical and accurate model of the matter power spectrum and cluster counts, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.123520
[95] Takahashi, Ryuichi; Nishimichi, Takahiro; Namikawa, Toshiya; Taruya, Atsushi; Kayo, Issha; Osato, Ken, Fitting the nonlinear matter bispectrum by the Halofit approach, Astrophys. J., 895, 113 (2020) · doi:10.3847/1538-4357/ab908d
[96] Lewis, Antony, The real shape of non-Gaussianities, JCAP, 10 (2011) · doi:10.1088/1475-7516/2011/10/026
[97] Munshi, D.; Namikawa, T.; Kitching, T. D.; McEwen, J. D.; Takahashi, R.; Bouchet, F. R., The Weak Lensing Bispectrum Induced By Gravity, Mon. Not. Roy. Astron. Soc., 493, 3985-3995 (2020) · doi:10.1093/mnras/staa296
[98] Fujita, Tomohiro; Vlah, Zvonimir, Perturbative description of biased tracers using consistency relations of LSS, JCAP, 10 (2020) · Zbl 1495.85003 · doi:10.1088/1475-7516/2020/10/059
[99] Munshi, D.; Namikawa, T.; Kitching, T. D.; McEwen, J. D.; Bouchet, F. R., Weak Lensing Skew-Spectrum, Mon. Not. Roy. Astron. Soc., 498, 6057-6068 (2020) · doi:10.1093/mnras/staa2769
[100] Schmittfull, Marcel; Baldauf, Tobias; Seljak, Uroš, Near optimal bispectrum estimators for large-scale structure, Phys. Rev. D, 91 (2015) · doi:10.1103/PhysRevD.91.043530
[101] Moradinezhad Dizgah, Azadeh; Lee, Hayden; Schmittfull, Marcel; Dvorkin, Cora, Capturing non-Gaussianity of the large-scale structure with weighted skew-spectra, JCAP, 04 (2020) · Zbl 1491.83060 · doi:10.1088/1475-7516/2020/04/011
[102] Schmittfull, Marcel; Moradinezhad Dizgah, Azadeh, Galaxy skew-spectra in redshift-space, JCAP, 03 (2021) · Zbl 1484.83153 · doi:10.1088/1475-7516/2021/03/020
[103] Takahashi, Ryuichi; Hamana, Takashi; Shirasaki, Masato; Namikawa, Toshiya; Nishimichi, Takahiro; Osato, Ken, Full-sky Gravitational Lensing Simulation for Large-area Galaxy Surveys and Cosmic Microwave Background Experiments, Astrophys. J., 850, 24 (2017) · doi:10.3847/1538-4357/aa943d
[104] Munshi, D.; Namikawa, T.; Kitching, T. D.; McEwen, J. D.; Bouchet, F. R., Weak Lensing Skew-Spectrum, Mon. Not. Roy. Astron. Soc., 498, 6057-6068 (2020) · doi:10.1093/mnras/staa2769
[105] Górski, K. M.; Hivon, E.; Banday, A. J.; Wandelt, B. D.; Hansen, F. K.; Reinecke, M., HEALPix - A Framework for high resolution discretization, and fast analysis of data distributed on the sphere, Astrophys. J., 622, 759-771 (2005) · doi:10.1086/427976
[106] Hivon, E.; Gorski, K. M.; Netterfield, C. B.; Crill, B. P.; Prunet, S.; Hansen, F., Master of the cosmic microwave background anisotropy power spectrum: a fast method for statistical analysis of large and complex cosmic microwave background data sets, Astrophys. J., 567, 2 (2002) · doi:10.1086/338126
[107] Hikage, Chiaki; Takada, Masahiro; Hamana, Takashi; Spergel, David, Shear Power Spectrum Reconstruction using Pseudo-Spectrum Method, Mon. Not. Roy. Astron. Soc., 412, 65-74 (2011) · doi:10.1111/j.1365-2966.2010.17886.x
[108] Munshi, D.; Namikawa, T.; Kitching, T. D.; McEwen, J. D.; Takahashi, R.; Bouchet, F. R., The Weak Lensing Bispectrum Induced By Gravity, Mon. Not. Roy. Astron. Soc., 493, 3985-3995 (2020) · doi:10.1093/mnras/staa296
[109] Bertolini, Daniele; Schutz, Katelin; Solon, Mikhail P.; Walsh, Jonathan R.; Zurek, Kathryn M., Non-Gaussian Covariance of the Matter Power Spectrum in the Effective Field Theory of Large Scale Structure, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.123505
[110] Bertolini, Daniele; Schutz, Katelin; Solon, Mikhail P.; Zurek, Kathryn M., The Trispectrum in the Effective Field Theory of Large Scale Structure, JCAP, 06 (2016) · doi:10.1088/1475-7516/2016/06/052
[111] Steele, Theodore; Baldauf, Tobias, Precise Calibration of the One-Loop Trispectrum in the Effective Field Theory of Large Scale Structure, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.103518
[112] Szapudi, Istvan; Colombi, Stephane, Cosmic error and the statistics of large scale structure, Astrophys. J., 470, 131 (1996) · doi:10.1086/177855
[113] Spurio Mancini, Alessio; Piras, Davide; Alsing, Justin; Joachimi, Benjamin; Hobson, Michael P., CosmoPower: emulating cosmological power spectra for accelerated Bayesian inference from next-generation surveys, Mon. Not. Roy. Astron. Soc., 511, 1771-1788 (2022) · doi:10.1093/mnras/stac064
[114] Kaiser, Nick; Squires, Gordon, Mapping the dark matter with weak gravitational lensing, Astrophys. J., 404, 441-450 (1993) · doi:10.1086/172297
[115] Price, M. A.; Mcewen, J. D.; Pratley, L.; Kitching, T. D., Sparse Bayesian mass-mapping with uncertainties: Full sky observations on the celestial sphere, Mon. Not. Roy. Astron. Soc., 500, 5436-5452 (2020) · doi:10.1093/mnras/staa3563
[116] Namikawa, Toshiya; Bose, Benjamin; Bouchet, François R.; Takahashi, Ryuichi; Taruya, Atsushi, CMB lensing bispectrum: Assessing analytical predictions against full-sky lensing simulations, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.063511
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.