×

Bispectrum-window convolution via Hankel transform. (English) Zbl 1515.83115

MSC:

83C56 Dark matter and dark energy
62F10 Point estimation
86A15 Seismology (including tsunami modeling), earthquakes
62H30 Classification and discrimination; cluster analysis (statistical aspects)
81V60 Mono-, di- and multipole moments (EM and other), gyromagnetic relations
78A45 Diffraction, scattering

References:

[1] P.J.E. Peebles, The large-scale structure of the universe, Princeton University Press (1980), p. 435. · Zbl 1422.85005
[2] J.N. Fry, Gravity, bias, and the galaxy three-point correlation function, Phys. Rev. Lett.73 (1994) 215. · doi:10.1103/PhysRevLett.73.215
[3] Hivon, E.; Bouchet, F. R.; Colombi, S.; Juszkiewicz, R., Redshift distortions of clustering: A Lagrangian approach, Astron. Astrophys., 298, 643-660 (1995)
[4] Matarrese, S.; Verde, Licia; Heavens, A. F., Large scale bias in the universe: Bispectrum method, Mon. Not. Roy. Astron. Soc., 290, 651-662 (1997) · doi:10.1093/mnras/290.4.651
[5] Scoccimarro, Roman; Colombi, Stephane; Fry, James N.; Frieman, Joshua A.; Hivon, Eric; Melott, Adrian, Nonlinear evolution of the bispectrum of cosmological perturbations, Astrophys. J., 496, 586 (1998) · doi:10.1086/305399
[6] Scoccimarro, Roman, The bispectrum: from theory to observations, Astrophys. J., 544, 597 (2000) · doi:10.1086/317248
[7] Sefusatti, Emiliano; Crocce, Martin; Pueblas, Sebastian; Scoccimarro, Roman, Cosmology and the Bispectrum, Phys. Rev. D, 74 (2006) · doi:10.1103/PhysRevD.74.023522
[8] Gagrani, Praful; Samushia, Lado, Information Content of the Angular Multipoles of Redshift-Space Galaxy Bispectrum, Mon. Not. Roy. Astron. Soc., 467, 928-935 (2017) · doi:10.1093/mnras/stx135
[9] Yankelevich, Victoria; Porciani, Cristiano, Cosmological information in the redshift-space bispectrum, Mon. Not. Roy. Astron. Soc., 483, 2078-2099 (2019) · doi:10.1093/mnras/sty3143
[10] D’Amico, Guido; Gleyzes, Jérôme; Kokron, Nickolas; Markovic, Katarina; Senatore, Leonardo; Zhang, Pierre, The Cosmological Analysis of the SDSS/BOSS data from the Effective Field Theory of Large-Scale Structure, JCAP, 05 (2020) · doi:10.1088/1475-7516/2020/05/005
[11] Gualdi, Davide; Verde, Licia, Galaxy redshift-space bispectrum: the Importance of Being Anisotropic, JCAP, 06 (2020) · doi:10.1088/1475-7516/2020/06/041
[12] Hahn, ChangHoon; Villaescusa-Navarro, Francisco; Castorina, Emanuele; Scoccimarro, Roman, Constraining M_ν with the bispectrum. Part I. Breaking parameter degeneracies, JCAP, 03 (2020) · doi:10.1088/1475-7516/2020/03/040
[13] Hahn, Changhoon; Villaescusa-Navarro, Francisco, Constraining M_ν with the bispectrum. Part II. The information content of the galaxy bispectrum monopole, JCAP, 04 (2021) · doi:10.1088/1475-7516/2021/04/029
[14] Agarwal, Nishant; Desjacques, Vincent; Jeong, Donghui; Schmidt, Fabian, Information content in the redshift-space galaxy power spectrum and bispectrum, JCAP, 03 (2021) · Zbl 1484.83094 · doi:10.1088/1475-7516/2021/03/021
[15] Ivanov, Mikhail M.; Philcox, Oliver H. E.; Nishimichi, Takahiro; Simonović, Marko; Takada, Masahiro; Zaldarriaga, Matias, Precision analysis of the redshift-space galaxy bispectrum, Phys. Rev. D, 105 (2022) · doi:10.1103/PhysRevD.105.063512
[16] Scoccimarro, Roman; Feldman, Hume A.; Fry, James N.; Frieman, Joshua A., The Bispectrum of IRAS redshift catalogs, Astrophys. J., 546, 652 (2001) · doi:10.1086/318284
[17] Scoccimarro, Roman; Sefusatti, Emiliano; Zaldarriaga, Matias, Probing primordial non-Gaussianity with large - scale structure, Phys. Rev. D, 69 (2004) · doi:10.1103/PhysRevD.69.103513
[18] Sefusatti, Emiliano; Komatsu, Eiichiro, The Bispectrum of Galaxies from High-Redshift Galaxy Surveys: Primordial Non-Gaussianity and Non-Linear Galaxy Bias, Phys. Rev. D, 76 (2007) · doi:10.1103/PhysRevD.76.083004
[19] Jeong, Donghui; Komatsu, Eiichiro, Primordial non-Gaussianity, scale-dependent bias, and the bispectrum of galaxies, Astrophys. J., 703, 1230-1248 (2009) · doi:10.1088/0004-637X/703/2/1230
[20] Sefusatti, Emiliano, 1-loop Perturbative Corrections to the Matter and Galaxy Bispectrum with non-Gaussian Initial Conditions, Phys. Rev. D, 80 (2009) · doi:10.1103/PhysRevD.80.123002
[21] Tasinato, Gianmassimo; Tellarini, Matteo; Ross, Ashley J.; Wands, David, Primordial non-Gaussianity in the bispectra of large-scale structure, JCAP, 03 (2014) · doi:10.1088/1475-7516/2014/03/032
[22] Tellarini, Matteo; Ross, Ashley J.; Tasinato, Gianmassimo; Wands, David, Non-local bias in the halo bispectrum with primordial non-Gaussianity, JCAP, 07 (2015) · doi:10.1088/1475-7516/2015/07/004
[23] Moradinezhad Dizgah, Azadeh; Lee, Hayden; Muñoz, Julian B.; Dvorkin, Cora, Galaxy Bispectrum from Massive Spinning Particles, JCAP, 05 (2018) · Zbl 1527.85008 · doi:10.1088/1475-7516/2018/05/013
[24] Karagiannis, Dionysios; Lazanu, Andrei; Liguori, Michele; Raccanelli, Alvise; Bartolo, Nicola; Verde, Licia, Constraining primordial non-Gaussianity with bispectrum and power spectrum from upcoming optical and radio surveys, Mon. Not. Roy. Astron. Soc., 478, 1341-1376 (2018) · doi:10.1093/mnras/sty1029
[25] Moradinezhad Dizgah, Azadeh; Biagetti, Matteo; Sefusatti, Emiliano; Desjacques, Vincent; Noreña, Jorge, Primordial Non-Gaussianity from Biased Tracers: Likelihood Analysis of Real-Space Power Spectrum and Bispectrum, JCAP, 05 (2021) · Zbl 1485.83168 · doi:10.1088/1475-7516/2021/05/015
[26] Barreira, Alexandre, Predictions for local PNG bias in the galaxy power spectrum and bispectrum and the consequences for f_NL constraints, JCAP, 01 (2022) · doi:10.1088/1475-7516/2022/01/033
[27] Cabass, Giovanni; Ivanov, Mikhail M.; Philcox, Oliver H. E.; Simonović, Marko; Zaldarriaga, Matias, Constraints on Single-Field Inflation from the BOSS Galaxy Survey, Phys. Rev. Lett., 129 (2022) · doi:10.1103/PhysRevLett.129.021301
[28] D’Amico, Guido; Lewandowski, Matthew; Senatore, Leonardo; Zhang, Pierre, Limits on primordial non-Gaussianities from BOSS galaxy-clustering data (2022)
[29] Scoccimarro, Roman; Couchman, H. M. P.; Frieman, Joshua A., The Bispectrum as a Signature of Gravitational Instability in Redshift-Space, Astrophys. J., 517, 531-540 (1999) · doi:10.1086/307220
[30] Scoccimarro, Roman, Gravitational clustering from χ^2 initial conditions, Astrophys. J., 542, 1-8 (2000) · doi:10.1086/309519
[31] Scoccimarro, Roman, Fast Estimators for Redshift-Space Clustering, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.083532
[32] Feldman, Hume A.; Kaiser, Nick; Peacock, John A., Power spectrum analysis of three-dimensional redshift surveys, Astrophys. J., 426, 23-37 (1994) · doi:10.1086/174036
[33] Wilson, M. J.; Peacock, J. A.; Taylor, A. N.; de la Torre, S., Rapid modelling of the redshift-space power spectrum multipoles for a masked density field, Mon. Not. Roy. Astron. Soc., 464, 3121-3130 (2017) · doi:10.1093/mnras/stw2576
[34] BOSS Collaboration; Beutler, Florian, The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Anisotropic galaxy clustering in Fourier-space, Mon. Not. Roy. Astron. Soc., 466, 2242-2260 (2017) · doi:10.1093/mnras/stw3298
[35] Yamamoto, Kazuhiro; Nakamichi, Masashi; Kamino, Akinari; Bassett, Bruce A.; Nishioka, Hiroaki, A Measurement of the quadrupole power spectrum in the clustering of the 2dF QSO Survey, Publ. Astron. Soc. Jap., 58, 93-102 (2006) · doi:10.1093/pasj/58.1.93
[36] Bianchi, Davide; Gil-Marín, Héctor; Ruggeri, Rossana; Percival, Will J., Measuring line-of-sight dependent Fourier-space clustering using FFTs, Mon. Not. Roy. Astron. Soc., 453, L11-L15 (2015) · doi:10.1093/mnrasl/slv090
[37] Castorina, Emanuele; White, Martin, Beyond the plane-parallel approximation for redshift surveys, Mon. Not. Roy. Astron. Soc., 476, 4403-4417 (2018) · doi:10.1093/mnras/sty410
[38] Beutler, Florian; Castorina, Emanuele; Zhang, Pierre, Interpreting measurements of the anisotropic galaxy power spectrum, JCAP, 03 (2019) · doi:10.1088/1475-7516/2019/03/040
[39] Castorina, Emanuele; di Dio, Enea, The observed galaxy power spectrum in General Relativity, JCAP, 01 (2022) · Zbl 1486.85024 · doi:10.1088/1475-7516/2022/01/061
[40] Hamilton, A. J. S., Uncorrelated modes of the nonlinear power spectrum, Mon. Not. Roy. Astron. Soc., 312, 257-284 (2000) · doi:10.1046/j.1365-8711.2000.03071.x
[41] Beutler, Florian; McDonald, Patrick, Unified galaxy power spectrum measurements from 6dFGS, BOSS, and eBOSS, JCAP, 11 (2021) · doi:10.1088/1475-7516/2021/11/031
[42] BOSS Collaboration; Beutler, Florian, The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Testing gravity with redshift-space distortions using the power spectrum multipoles, Mon. Not. Roy. Astron. Soc., 443, 1065-1089 (2014) · doi:10.1093/mnras/stu1051
[43] Gil-Marín, Héctor; Noreña, Jorge; Verde, Licia; Percival, Will J.; Wagner, Christian; Manera, Marc, The power spectrum and bispectrum of SDSS DR11 BOSS galaxies - I. Bias and gravity, Mon. Not. Roy. Astron. Soc., 451, 539-580 (2015) · doi:10.1093/mnras/stv961
[44] Gil-Marín, Héctor; Verde, Licia; Noreña, Jorge; Cuesta, Antonio J.; Samushia, Lado; Percival, Will J., The power spectrum and bispectrum of SDSS DR11 BOSS galaxies - II. Cosmological interpretation, Mon. Not. Roy. Astron. Soc., 452, 1914-1921 (2015) · doi:10.1093/mnras/stv1359
[45] Gil-Marín, Héctor; Percival, Will J.; Verde, Licia; Brownstein, Joel R.; Chuang, Chia-Hsun; Kitaura, Francisco-Shu, The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the power spectrum and bispectrum of the DR12 BOSS galaxies, Mon. Not. Roy. Astron. Soc., 465, 1757-1788 (2017) · doi:10.1093/mnras/stw2679
[46] Sefusatti, Emiliano; Crocce, Martin; Desjacques, Vincent, The Halo Bispectrum in N-body Simulations with non-Gaussian Initial Conditions, Mon. Not. Roy. Astron. Soc., 425, 2903 (2012) · doi:10.1111/j.1365-2966.2012.21271.x
[47] Sugiyama, Naonori S.; Saito, Shun; Beutler, Florian; Seo, Hee-Jong, A complete FFT-based decomposition formalism for the redshift-space bispectrum, Mon. Not. Roy. Astron. Soc., 484, 364-384 (2019) · doi:10.1093/mnras/sty3249
[48] Szapudi, Istvan, Three - point statistics from a new perspective, Astrophys. J. Lett., 605, L89 (2004) · doi:10.1086/420894
[49] Sugiyama, Naonori S.; Saito, Shun; Beutler, Florian; Seo, Hee-Jong, Towards a self-consistent analysis of the anisotropic galaxy two- and three-point correlation functions on large scales: application to mock galaxy catalogues, Mon. Not. Roy. Astron. Soc., 501, 2862-2896 (2021) · doi:10.1093/mnras/staa3725
[50] Philcox, Oliver H. E., Cosmology without window functions. II. Cubic estimators for the galaxy bispectrum, Phys. Rev. D, 104 (2021) · doi:10.1103/PhysRevD.104.123529
[51] Tegmark, Max; Hamilton, Andrew J. S.; Strauss, Michael A.; Vogeley, Michael S.; Szalay, Alexander S., Measuring the galaxy power spectrum with future redshift surveys, Astrophys. J., 499, 555-576 (1998) · doi:10.1086/305663
[52] Tegmark, Max; Taylor, Andy; Heavens, Alan, Karhunen-Loeve eigenvalue problems in cosmology: How should we tackle large data sets?, Astrophys. J., 480, 22 (1997) · doi:10.1086/303939
[53] Hamilton, Andrew J. S., Power spectrum estimation. 1. Basics, Lect. Notes Phys., 665, 415-431 (2008) · Zbl 1179.85030
[54] Hamilton, Andrew J. S., Power spectrum estimation. 2. Linear maximum likelihood, Lect. Notes Phys., 665, 433-456 (2008) · Zbl 1179.85031
[55] Castorina, Emanuele, Redshift-weighted constraints on primordial non-Gaussianity from the clustering of the eBOSS DR14 quasars in Fourier space, JCAP, 09 (2019) · doi:10.1088/1475-7516/2019/09/010
[56] Mueller, Eva-Maria, The clustering of galaxies in the completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Primordial non-Gaussianity in Fourier Space (2021)
[57] Hashimoto, Ichihiko; Rasera, Yann; Taruya, Atsushi, Precision cosmology with redshift-space bispectrum: a perturbation theory based model at one-loop order, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.043526
[58] Castorina, Emanuele; White, Martin, The Zeldovich approximation and wide-angle redshift-space distortions, Mon. Not. Roy. Astron. Soc., 479, 741-752 (2018) · doi:10.1093/mnras/sty1437
[59] Mehrem, R.; Londergan, J. T.; Macfarlane, M. H., Analytic expressions for integrals of products of spherical Bessel functions, J. Phys. A, 24, 1435-1454 (1991) · Zbl 0736.33004
[60] Grieb, Jan Niklas; Sánchez, Ariel G.; Salazar-Albornoz, Salvador; Dalla Vecchia, Claudio, Gaussian covariance matrices for anisotropic galaxy clustering measurements, Mon. Not. Roy. Astron. Soc., 457, 1577-1592 (2016) · doi:10.1093/mnras/stw065
[61] Oddo, Andrea; Sefusatti, Emiliano; Porciani, Cristiano; Monaco, Pierluigi; Sánchez, Ariel G., Toward a robust inference method for the galaxy bispectrum: likelihood function and model selection, JCAP, 03 (2020) · doi:10.1088/1475-7516/2020/03/056
[62] Oddo, Andrea; Rizzo, Federico; Sefusatti, Emiliano; Porciani, Cristiano; Monaco, Pierluigi, Cosmological parameters from the likelihood analysis of the galaxy power spectrum and bispectrum in real space, JCAP, 11 (2021) · Zbl 1487.83072 · doi:10.1088/1475-7516/2021/11/038
[63] Monaco, P.; Theuns, T.; Taffoni, G., Pinocchio: pinpointing orbit-crossing collapsed hierarchical objects in a linear density field, Mon. Not. Roy. Astron. Soc., 331, 587 (2002) · doi:10.1046/j.1365-8711.2002.05162.x
[64] Monaco, P.; Sefusatti, E.; Borgani, S.; Crocce, M.; Fosalba, P.; Sheth, R. K., An accurate tool for the fast generation of dark matter halo catalogs, Mon. Not. Roy. Astron. Soc., 433, 2389-2402 (2013) · doi:10.1093/mnras/stt907
[65] Munari, Emiliano; Monaco, Pierluigi; Sefusatti, Emiliano; Castorina, Emanuele; Mohammad, Faizan G.; Anselmi, Stefano, Improving fast generation of halo catalogues with higher order Lagrangian perturbation theory, Mon. Not. Roy. Astron. Soc., 465, 4658-4677 (2017) · doi:10.1093/mnras/stw3085
[66] Sefusatti, Emiliano; Crocce, Martin; Scoccimarro, Roman; Couchman, Hugh, Accurate Estimators of Correlation Functions in Fourier Space, Mon. Not. Roy. Astron. Soc., 460, 3624-3636 (2016) · doi:10.1093/mnras/stw1229
[67] Bernardeau, F.; Colombi, S.; Gaztanaga, E.; Scoccimarro, R., Large scale structure of the universe and cosmological perturbation theory, Phys. Rept., 367, 1-248 (2002) · Zbl 0996.85005 · doi:10.1016/S0370-1573(02)00135-7
[68] Chan, Kwan Chuen; Scoccimarro, Roman; Sheth, Ravi K., Gravity and Large-Scale Non-local Bias, Phys. Rev. D, 85 (2012) · doi:10.1103/PhysRevD.85.083509
[69] Baldauf, Tobias; Seljak, Uros; Desjacques, Vincent; McDonald, Patrick, Evidence for Quadratic Tidal Tensor Bias from the Halo Bispectrum, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.083540
[70] Fang, Xiao; Eifler, Tim; Krause, Elisabeth, 2D-FFTLog: Efficient computation of real space covariance matrices for galaxy clustering and weak lensing, Mon. Not. Roy. Astron. Soc., 497, 2699-2714 (2020) · doi:10.1093/mnras/staa1726
[71] Eggemeier, Alexander; Scoccimarro, Román; Smith, Robert E.; Crocce, Martin; Pezzotta, Andrea; Sánchez, Ariel G., Testing one-loop galaxy bias: Joint analysis of power spectrum and bispectrum, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.123550
[72] Hartlap, J.; Simon, Patrick; Schneider, P., Why your model parameter confidences might be too optimistic: Unbiased estimation of the inverse covariance matrix, Astron. Astrophys., 464, 399 (2007) · doi:10.1051/0004-6361:20066170
[73] Foreman-Mackey, Daniel; Hogg, David W.; Lang, Dustin; Goodman, Jonathan, emcee: The MCMC Hammer, Publ. Astron. Soc. Pac., 125, 306-312 (2013) · doi:10.1086/670067
[74] Lewis, Antony; Challinor, Anthony; Lasenby, Anthony, Efficient computation of CMB anisotropies in closed FRW models, Astrophys. J., 538, 473-476 (2000) · doi:10.1086/309179
[75] J. Goodman and J. Weare, Ensemble samplers with affine invariance, Comm. App. Math. Comp. Sci.5 (2010) 65. · Zbl 1189.65014 · doi:10.2140/camcos.2010.5.65
[76] J.A. Peacock and D. Nicholson, The large-scale clustering of radio galaxies, Mon. Not. Roy. Astron. Soc.253 (1991) 307. · doi:10.1093/mnras/253.2.307
[77] Nishimichi, Takahiro; D’Amico, Guido; Ivanov, Mikhail M.; Senatore, Leonardo; Simonović, Marko; Takada, Masahiro, Blinded challenge for precision cosmology with large-scale structure: results from effective field theory for the redshift-space galaxy power spectrum, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.123541
[78] Euclid Collaboration; Blanchard, A., Euclid preparation: VII. Forecast validation for Euclid cosmological probes, Astron. Astrophys., 642, A191 (2020) · doi:10.1051/0004-6361/202038071
[79] Umeh, Obinna; Jolicoeur, Sheean; Maartens, Roy; Clarkson, Chris, A general relativistic signature in the galaxy bispectrum: the local effects of observing on the lightcone, JCAP, 03 (2017) · Zbl 1515.83109 · doi:10.1088/1475-7516/2017/03/034
[80] Clarkson, Chris; de Weerd, Eline M.; Jolicoeur, Sheean; Maartens, Roy; Umeh, Obinna, The dipole of the galaxy bispectrum, Mon. Not. Roy. Astron. Soc., 486, L101-L104 (2019) · doi:10.1093/mnrasl/slz066
[81] de Weerd, Eline M.; Clarkson, Chris; Jolicoeur, Sheean; Maartens, Roy; Umeh, Obinna, Multipoles of the relativistic galaxy bispectrum, JCAP, 05 (2020) · Zbl 1491.85004 · doi:10.1088/1475-7516/2020/05/018
[82] Maartens, Roy; Jolicoeur, Sheean; Umeh, Obinna; De Weerd, Eline M.; Clarkson, Chris; Camera, Stefano, Detecting the relativistic galaxy bispectrum, JCAP, 03 (2020) · Zbl 1490.85008 · doi:10.1088/1475-7516/2020/03/065
[83] Barreira, Alexandre, On the impact of galaxy bias uncertainties on primordial non-Gaussianity constraints, JCAP, 12 (2020) · Zbl 1484.83102 · doi:10.1088/1475-7516/2020/12/031
[84] Enríquez, Miguel; Hidalgo, Juan Carlos; Valenzuela, Octavio, Including relativistic and primordial non-Gaussianity contributions in cosmological simulations by modifying the initial conditions, JCAP, 03 (2022) · Zbl 1504.83037 · doi:10.1088/1475-7516/2022/03/048
[85] Maartens, Roy; Jolicoeur, Sheean; Umeh, Obinna; De Weerd, Eline M.; Clarkson, Chris, Local primordial non-Gaussianity in the relativistic galaxy bispectrum, JCAP, 04 (2021) · Zbl 1485.85002 · doi:10.1088/1475-7516/2021/04/013
[86] Slepian, Zachary; Eisenstein, Daniel J., A practical computational method for the anisotropic redshift-space three-point correlation function, Mon. Not. Roy. Astron. Soc., 478, 1468-1483 (2018) · doi:10.1093/mnras/sty1063
[87] Umeh, Obinna, Optimal computation of anisotropic galaxy three point correlation function multipoles using 2DFFTLOG formalism, JCAP, 05 (2021) · Zbl 1485.83185 · doi:10.1088/1475-7516/2021/05/035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.