×

Imprints of spinning particles on primordial cosmological perturbations. (English) Zbl 1527.83131

Summary: If there exist higher-spin particles during inflation which are light compared to the Hubble rate, they may leave distinct statistical anisotropic imprints on the correlators involving scalar and graviton fluctuations. We characterise such signatures using the dS/\(\mathrm{CFT}_3\) correspondence and the operator product expansion techniques. In particular, we obtain generic results for the case of partially massless higher-spin states.

MSC:

83F05 Relativistic cosmology

References:

[1] D.H. Lyth and A. Riotto, 1999 Particle physics models of inflation and the cosmological density perturbation, https://doi.org/10.1016/S0370-1573(98)00128-8 Phys. Rept.314 1 [hep-ph/9807278] · doi:10.1016/S0370-1573(98)00128-8
[2] X. Chen and Y. Wang, 2010 Large non-Gaussianities with intermediate shapes from quasi-single field inflation, https://doi.org/10.1103/PhysRevD.81.063511 Phys. Rev. D 81 063511 [0909.0496] · doi:10.1103/PhysRevD.81.063511
[3] X. Chen and Y. Wang, 2010 Quasi-single field inflation and non-Gaussianities J. Cosmol. Astropart. Phys.2010 04 027 [0911.3380]
[4] N. Arkani-Hamed and J. Maldacena, Cosmological collider physics, [1503.08043]
[5] H. Lee, D. Baumann and G.L. Pimentel, 2016 Non-Gaussianity as a particle detector J. High Energy Phys. JHEP12(2016)040 [1607.03735] · Zbl 1390.83465 · doi:10.1007/JHEP12(2016)040
[6] P.D. Meerburg, M. Münchmeyer, J.B. Muñoz and X. Chen, 2017 Prospects for cosmological collider physics J. Cosmol. Astropart. Phys.2017 03 050 [1610.06559]
[7] A. Moradinezhad Dizgah and C. Dvorkin, 2018 Scale-dependent galaxy bias from massive particles with spin during inflation J. Cosmol. Astropart. Phys.2018 01 010 [1708.06473] · Zbl 1527.85008
[8] A. Strominger, 2001 The dS/CFT correspondence J. High Energy Phys. JHEP10(2001)034 [hep-th/0106113]
[9] D.H. Lyth and D. Wands, 2002 Generating the curvature perturbation without an inflaton, https://doi.org/10.1016/S0370-2693(01)01366-1 Phys. Lett. B 524 5 [hep-ph/0110002] · Zbl 0981.83063 · doi:10.1016/S0370-2693(01)01366-1
[10] A. Higuchi, 1987 Forbidden mass range for spin-2 field theory in de Sitter space-time, https://doi.org/10.1016/0550-3213(87)90691-2 Nucl. Phys. B 282 397 · doi:10.1016/0550-3213(87)90691-2
[11] L. Bordin, P. Creminelli, M. Mirbabayi and J. Noreña, 2016 Tensor squeezed limits and the Higuchi bound J. Cosmol. Astropart. Phys.2016 09 041 [1605.08424]
[12] A. Kehagias and A. Riotto, 2017 Inflation and conformal invariance: the perspective from radial quantization, https://doi.org/10.1002/prop.201700023 Fortsch. Phys.65 1700023 [1701.05462] · Zbl 1371.83209 · doi:10.1002/prop.201700023
[13] S. Deser and R.I. Nepomechie, 1983 Anomalous propagation of gauge fields in conformally flat spaces, https://doi.org/10.1016/0370-2693(83)90317-9 Phys. Lett. B 132 321 · doi:10.1016/0370-2693(83)90317-9
[14] S. Deser and R.I. Nepomechie, 1984 Gauge invariance versus masslessness in de Sitter space, https://doi.org/10.1016/0003-4916(84)90156-8 Annals Phys.154 396 · doi:10.1016/0003-4916(84)90156-8
[15] S. Deser and A. Waldron, 2001 Gauge invariances and phases of massive higher spins in (A)dS, https://doi.org/10.1103/PhysRevLett.87.031601 Phys. Rev. Lett.87 031601 [hep-th/0102166] · doi:10.1103/PhysRevLett.87.031601
[16] S. Deser and A. Waldron, 2001 Partial masslessness of higher spins in (A)dS, https://doi.org/10.1016/S0550-3213(01)00212-7 Nucl. Phys. B 607 577 [hep-th/0103198] · Zbl 0969.81601 · doi:10.1016/S0550-3213(01)00212-7
[17] S. Deser and A. Waldron, 2003 Arbitrary spin representations in de Sitter from dS/CFT with applications to dS supergravity https://doi.org/10.1016/S0550-3213(03)00348-1 Nucl. Phys. B 662 379 [hep-th/0301068] · Zbl 1040.81068 · doi:10.1016/S0550-3213(03)00348-1
[18] L. Dolan, C.R. Nappi and E. Witten, 2001 Conformal operators for partially massless states J. High Energy Phys. JHEP10(2001)016 [hep-th/0109096]
[19] S. Deser and A. Waldron, 2004 Conformal invariance of partially massless higher spins, https://doi.org/10.1016/j.physletb.2004.10.007 Phys. Lett. B 603 30 [hep-th/0408155] · Zbl 1247.81184
[20] B. Ratra, 1992 Cosmological ’seed’ magnetic field from inflation, https://doi.org/10.1086/186384 Astrophys. J.391 L1 · doi:10.1086/186384
[21] J. Martin and J. Yokoyama, 2008 Generation of large-scale magnetic fields in single-field inflation J. Cosmol. Astropart. Phys.2008 01 025 [0711.4307]
[22] V. Demozzi, V. Mukhanov and H. Rubinstein, 2009 Magnetic fields from inflation? J. Cosmol. Astropart. Phys.2009 08 025 [0907.1030]
[23] M. Biagetti, A. Kehagias, E. Morgante, H. Perrier and A. Riotto, 2013 Symmetries of vector perturbations during the de Sitter epoch J. Cosmol. Astropart. Phys.2013 07 030 [1304.7785]
[24] A. Kehagias and A. Riotto, 2017 On the inflationary perturbations of massive higher-spin fields J. Cosmol. Astropart. Phys.2017 07 046 [1705.05834] · Zbl 1515.83378
[25] M.-A. Watanabe, S. Kanno and J. Soda, 2010 The nature of primordial fluctuations from anisotropic inflation https://doi.org/10.1143/PTP.123.1041 Prog. Theor. Phys.123 1041 [1003.0056] · Zbl 1197.83133 · doi:10.1143/PTP.123.1041
[26] J. Soda, 2012 Statistical anisotropy from anisotropic inflation, https://doi.org/10.1088/0264-9381/29/8/083001 Class. Quant. Grav.29 083001 [1201.6434] · Zbl 1241.83006
[27] N. Bartolo, S. Matarrese, M. Peloso and A. Ricciardone, 2013 Anisotropic power spectrum and bispectrum in the f(φ)\(F^2\) mechanism https://doi.org/10.1103/PhysRevD.87.023504 Phys. Rev. D 87 023504 [1210.3257] · doi:10.1103/PhysRevD.87.023504
[28] N. Bartolo, A. Kehagias, M. Liguori, A. Riotto, M. Shiraishi and V. Tansella, 2018 Detecting higher spin fields through statistical anisotropy in the CMB and galaxy power spectra, https://doi.org/10.1103/PhysRevD.97.023503 Phys. Rev. D 97 023503 [1709.05695] · doi:10.1103/PhysRevD.97.023503
[29] J.L. Cardy, 1987 Anisotropic corrections to correlation functions in finite size systems, https://doi.org/10.1016/0550-3213(87)90192-1 Nucl. Phys. B 290 355 · doi:10.1016/0550-3213(87)90192-1
[30] A. Kehagias and A. Riotto, 2012 Operator product expansion of inflationary correlators and conformal symmetry of de Sitter, https://doi.org/10.1016/j.nuclphysb.2012.07.004 Nucl. Phys. B 864 492 [1205.1523] · Zbl 1262.83065
[31] A. Kehagias and A. Riotto, 2013 The four-point correlator in multifield inflation, the operator product expansion and the symmetries of de Sitter, https://doi.org/10.1016/j.nuclphysb.2012.11.025 Nucl. Phys. B 868 577 [1210.1918] · Zbl 1262.83066
[32] D. Baumann, G. Goon, H. Lee and G.L. Pimentel, Partially massless fields during inflation, [1712.06624]
[33] J.M. Maldacena, 2003 Non-Gaussian features of primordial fluctuations in single field inflationary models J. High Energy Phys. JHEP05(2003)013 [astro-ph/0210603]
[34] L. Apolo, S.F. Hassan and A. Lundkvist, 2016 Gauge and global symmetries of the candidate partially massless bimetric gravity https://doi.org/10.1103/PhysRevD.94.124055 Phys. Rev. D 94 124055 [1609.09515] · doi:10.1103/PhysRevD.94.124055
[35] S. Deser and A. Waldron, 2006 Partially massless spin 2 electrodynamics https://doi.org/10.1103/PhysRevD.74.084036 Phys. Rev. D 74 084036 [hep-th/0609113] · doi:10.1103/PhysRevD.74.084036
[36] E. Joung, L. Lopez and M. Taronna, 2012 On the cubic interactions of massive and partially-massless higher spins in (A)dS J. High Energy Phys. JHEP07(2012)041 [1203.6578] · doi:10.1007/JHEP07(2012)041
[37] E. Joung, L. Lopez and M. Taronna, 2013 Generating functions of (partially-)massless higher-spin cubic interactions J. High Energy Phys. JHEP01(2013)168 [1211.5912] · doi:10.1007/JHEP01(2013)168
[38] R. Manvelyan and W. Rühl, 2008 The generalized curvature and Christoffel symbols for a higher spin potential in \(AdS_{ d }+1\) space, https://doi.org/10.1016/j.nuclphysb.2007.10.012 Nucl. Phys. B 797 371 [0705.3528] · Zbl 1234.81102
[39] S. Deser and A. Waldron, 2006 Partially massless spin 2 electrodynamics, https://doi.org/10.1103/PhysRevD.74.084036 Phys. Rev. D 74 084036 [hep-th/0609113] · doi:10.1103/PhysRevD.74.084036
[40] M.A. Vasiliev, 1990 Consistent equation for interacting gauge fields of all spins in (3+1)-dimensions https://doi.org/10.1016/0370-2693(90)91400-6 Phys. Lett. B 243 378 · Zbl 1332.81084 · doi:10.1016/0370-2693(90)91400-6
[41] D. Anninos, T. Hartman and A. Strominger, 2017 Higher spin realization of the dS/CFT correspondence, https://doi.org/10.1088/1361-6382/34/1/015009 Class. Quant. Grav.34 015009 [1108.5735] · Zbl 1354.83043
[42] D. Anninos, F. Denef, R. Monten and Z. Sun, Higher spin de Sitter Hilbert space, [1711.10037]
[43] C. Sleight, 2017 Interactions in higher-spin gravity: a holographic perspective, https://doi.org/10.1088/1751-8121/aa820c J. Phys. A 50 383001 [1610.01318] · Zbl 1378.81161
[44] R. Aros, C. Iazeolla, J. Noreña, E. Sezgin, P. Sundell and Y. Yin, FRW and domain walls in higher spin gravity, [1712.02401]
[45] M.R. Gaberdiel, C. Peng and I.G. Zadeh, 2015 Higgsing the stringy higher spin symmetry J. High Energy Phys. JHEP10(2015)101 [1506.02045] · Zbl 1388.81814 · doi:10.1007/JHEP10(2015)101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.