×

Matter trispectrum: theoretical modelling and comparison to N-body simulations. (English) Zbl 1490.83086

Summary: The power spectrum has long been the workhorse summary statistics for large-scale structure cosmological analyses. However, gravitational non-linear evolution moves precious cosmological information from the two-point statistics (such as the power spectrum) to higher-order correlations. Moreover, information about the primordial non-Gaussian signal lies also in higher-order correlations. Without tapping into these, that information remains hidden. While the three-point function (or the bispectrum), even if not extensively, has been studied and applied to data, there has been only limited discussion about the four point/trispectrum. This is because the high-dimensionality of the statistics (in real space a skew-quadrilateral has 6 degrees of freedom), and the high number of skew-quadrilaterals, make the trispectrum numerically and algorithmically very challenging. Here we address this challenge by studying the i-trispectrum, an integrated trispectrum that only depends on four \(k\)-modes moduli. We model and measure the matter i-trispectrum from a set of 5000 QUIJOTE N-body simulations both in real and redshift space, finding good agreement between simulations outputs and model up to mildly non-linear scales. Using the power spectrum, bispectrum and i-trispectrum joint data-vector covariance matrix estimated from the simulations, we begin to quantify the added-value provided by the i-trispectrum. In particular, we forecast the i-trispectrum improvements on constraints on the local primordial non-Gaussianity amplitude parameters \(f_{\mathrm{nl}}\) and \(g_{\mathrm{nl}}\). For example, using the full joint data-vecispectrumtor, we forecast \(f_{\mathrm{nl}}\) constraints up to two times (\(\sim 32\)%) smaller in real (redshift) space than those obtained without i-tr.

MSC:

83F05 Relativistic cosmology
83E05 Geometrodynamics and the holographic principle
47A10 Spectrum, resolvent
83-10 Mathematical modeling or simulation for problems pertaining to relativity and gravitational theory

References:

[1] DESI collaboration, The DESI Experiment, a whitepaper for Snowmass 2013, [1308.0847]
[2] EUCLID collaboration, Euclid Definition Study Report, [1110.3193]
[3] PFS Team collaboration, 2014 Extragalactic science, cosmology, and Galactic archaeology with the Subaru Prime Focus Spectrograph, https://doi.org/10.1093/pasj/pst019 Publ. Astron. Soc. Jap.66 R1 [1206.0737] · doi:10.1093/pasj/pst019
[4] SKA collaboration, 2020 Cosmology with Phase 1 of the Square Kilometre Array: Red Book 2018: Technical specifications and performance forecasts, https://doi.org/10.1017/pasa.2019.51 Publ. Astron. Soc. Austral.37 e007 [1811.02743] · doi:10.1017/pasa.2019.51
[5] LSST Science and LSST Project collaborations, LSST Science Book, Version 2.0, [0912.0201]
[6] J. Green et al., Wide-Field InfraRed Survey Telescope (WFIRST) Final Report, [1208.4012]
[7] P.L. Taylor, T.D. Kitching, J. Alsing, B.D. Wandelt, S.M. Feeney and J.D. McEwen, 2019 Cosmic Shear: Inference from Forward Models, https://doi.org/10.1103/PhysRevD.100.023519 Phys. Rev. D100 023519 [1904.05364] · doi:10.1103/PhysRevD.100.023519
[8] D.K. Ramanah, G. Lavaux, J. Jasche and B.D. Wandelt, 2019 Cosmological inference from Bayesian forward modelling of deep galaxy redshift surveys, https://doi.org/10.1051/0004-6361/201834117 Astron. Astrophys.621 A69 [1808.07496] · doi:10.1051/0004-6361/201834117
[9] J. Alsing, T. Charnock, S. Feeney and B. Wandelt, 2019 Fast likelihood-free cosmology with neural density estimators and active learning, https://doi.org/10.1093/mnras/stz1960 Mon. Not. Roy. Astron. Soc.488 4440 [1903.00007] · doi:10.1093/mnras/stz1960
[10] R. Scoccimarro, H.A. Feldman, J.N. Fry and J.A. Frieman, 2001 The bispectrum of IRAS redshift catalogs, https://doi.org/10.1086/318284 Astrophys. J.546 652 [astro-ph/0004087] · doi:10.1086/318284
[11] L. Verde et al., 2002 The 2dF Galaxy Redshift Survey: The bias of galaxies and the density of the Universe, https://doi.org/10.1046/j.1365-8711.2002.05620.x Mon. Not. Roy. Astron. Soc.335 432 [astro-ph/0112161] · doi:10.1046/j.1365-8711.2002.05620.x
[12] H. Gil-Marín et al., 2017 The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the power spectrum and bispectrum of the DR12 BOSS galaxies, https://doi.org/10.1093/mnras/stw2679 Mon. Not. Roy. Astron. Soc.465 1757 [1606.00439] · doi:10.1093/mnras/stw2679
[13] N.S. Sugiyama, S. Saito, F. Beutler and H.-J. Seo, 2019 A complete FFT-based decomposition formalism for the redshift-space bispectrum, https://doi.org/10.1093/mnras/sty3249 Mon. Not. Roy. Astron. Soc.484 364 [1803.02132] · doi:10.1093/mnras/sty3249
[14] M. Kunz, A.J. Banday, P.G. Castro, P.G. Ferreira and K.M. Górski, 2001 The trispectrum of the 4 year cobe-dmr data, https://doi.org/10.1086/338602 Astrophys. J. Lett.563 L99 [astro-ph/0111250] · doi:10.1086/338602
[15] E. Komatsu, 2001 The pursuit of non-Gaussian fluctuations in the cosmic microwave background, Ph.D. thesis, Tohoku University, [astro-ph/0206039]
[16] G. de Troia et al., 2003 The trispectrum of the cosmic microwave background on subdegree angular scales: an analysis of the BOOMERanG data, https://doi.org/10.1046/j.1365-8711.2003.06665.x Mon. Not. Roy. Astron. Soc.343 284 · doi:10.1046/j.1365-8711.2003.06665.x
[17] D. Munshi, A. Heavens, A. Cooray, J. Smidt, P. Coles and P. Serra, 2011 New Optimised Estimators for the Primordial Trispectrum, https://doi.org/10.1111/j.1365-2966.2010.18035.x Mon. Not. Roy. Astron. Soc.412 1993 [0910.3693] · doi:10.1111/j.1365-2966.2010.18035.x
[18] M. Kamionkowski, T.L. Smith and A. Heavens, 2011 The CMB Bispectrum, Trispectrum, non-Gaussianity, and the Cramer-Rao Bound, https://doi.org/10.1103/PhysRevD.83.023007 Phys. Rev. D83 023007 [1010.0251] · doi:10.1103/PhysRevD.83.023007
[19] K. Izumi, S. Mizuno and K. Koyama, 2012 Trispectrum estimation in various models of equilateral type non-Gaussianity, https://doi.org/10.1103/PhysRevD.85.023521 Phys. Rev. D85 023521 [1109.3746] · doi:10.1103/PhysRevD.85.023521
[20] D. Regan, M. Gosenca and D. Seery, 2015 Constraining the WMAP9 bispectrum and trispectrum with needlets J. Cosmol. Astropart. Phys.2015 01 013 [1310.8617]
[21] C. Feng, A. Cooray, J. Smidt, J. O’Bryan, B. Keating and D. Regan, 2015 Planck Trispectrum Constraints on Primordial Non-Gaussianity at Cubic Order, https://doi.org/10.1103/PhysRevD.92.043509 Phys. Rev. D92 043509 [1502.00585] · doi:10.1103/PhysRevD.92.043509
[22] J.R. Fergusson, D.M. Regan and E.P.S. Shellard, Optimal Trispectrum Estimators and WMAP Constraints, [1012.6039]
[23] K.M. Smith, L. Senatore and M. Zaldarriaga, Optimal analysis of the CMB trispectrum, [1502.00635]
[24] T. Namikawa, 2018 Constraints on Patchy Reionization from Planck CMB Temperature Trispectrum, https://doi.org/10.1103/PhysRevD.97.063505 Phys. Rev. D97 063505 [1711.00058] · doi:10.1103/PhysRevD.97.063505
[25] Planck collaboration, 2020 Planck 2018 results. IX. Constraints on primordial non-Gaussianity, https://doi.org/10.1051/0004-6361/201935891 Astron. Astrophys.641 A9 [1905.05697] · doi:10.1051/0004-6361/201935891
[26] L. Verde and A.F. Heavens, 2001 On the trispectrum as a Gaussian test for cosmology, https://doi.org/10.1086/320656 Astrophys. J.553 14 [astro-ph/0101143] · doi:10.1086/320656
[27] A. Cooray, C. Li and A. Melchiorri, 2008 The trispectrum of 21-cm background anisotropies as a probe of primordial non-Gaussianity, https://doi.org/10.1103/PhysRevD.77.103506 Phys. Rev. D77 103506 [0801.3463] · doi:10.1103/PhysRevD.77.103506
[28] T. Lazeyras and F. Schmidt, 2018 Beyond LIMD bias: a measurement of the complete set of third-order halo bias parameters J. Cosmol. Astropart. Phys.2018 09 008 [1712.07531]
[29] N. Bellomo, N. Bartolo, R. Jimenez, S. Matarrese and L. Verde, 2018 Measuring the Energy Scale of Inflation with Large Scale Structures J. Cosmol. Astropart. Phys.2018 11 043 [1809.07113]
[30] J. Pielorz, J. Rödiger, I. Tereno and P. Schneider, 2010 A fitting formula for the non-Gaussian contribution to the lensing power spectrum covariance, https://doi.org/10.1051/0004-6361/200912854 Astron. Astrophys.514 A79 [0907.1524] · Zbl 1213.85062 · doi:10.1051/0004-6361/200912854
[31] I. Mohammed, U. Seljak and Z. Vlah, 2017 Perturbative approach to covariance matrix of the matter power spectrum, https://doi.org/10.1093/mnras/stw3196 Mon. Not. Roy. Astron. Soc.466 780 [1607.00043] · doi:10.1093/mnras/stw3196
[32] A. Taruya, T. Nishimichi and D. Jeong, The covariance of the matter power spectrum including the survey window function effect: N-body simulations vs. fifth-order perturbation theory on grid, [2007.05504]
[33] D. Bertolini, K. Schutz, M.P. Solon and K.M. Zurek, 2016 The Trispectrum in the Effective Field Theory of Large Scale Structure J. Cosmol. Astropart. Phys.2016 06 052 [1604.01770]
[34] H. Lee and C. Dvorkin, 2020 Cosmological Angular Trispectra and Non-Gaussian Covariance J. Cosmol. Astropart. Phys.2020 05 044 [2001.00584] · Zbl 1492.85019
[35] T. Lazeyras, M. Musso and V. Desjacques, 2016 Lagrangian bias of generic large-scale structure tracers, https://doi.org/10.1103/PhysRevD.93.063007 Phys. Rev. D93 063007 [1512.05283] · doi:10.1103/PhysRevD.93.063007
[36] J.N. Fry and P.J.E. Peebles, 1978 Statistical analysis of catalogs of extragalactic objects. IX. The four-point galaxy correlation function, https://doi.org/10.1086/156001 Astrophys. J.221 19 · doi:10.1086/156001
[37] Y. Suto and T. Matsubara, 1994 Departure from hierarchical clustering relations for two, three, and four point correlation functions: Analysis of cosmological N body simulations, https://doi.org/10.1086/173581 Astrophys. J.420 504 · doi:10.1086/173581
[38] C.G. Sabiu, B. Hoyle, J. Kim and X.-D. Li, 2019 Graph Database Solution for Higher Order Spatial Statistics in the Era of Big Data, https://doi.org/10.3847/1538-4365/ab22b5 Astrophys. J. Suppl.242 29 [1901.00296] · doi:10.3847/1538-4365/ab22b5
[39] E. Sefusatti and R. Scoccimarro, 2005 Galaxy bias and halo-occupation numbers from large-scale clustering, https://doi.org/10.1103/PhysRevD.71.063001 Phys. Rev. D71 063001 [astro-ph/0412626] · doi:10.1103/PhysRevD.71.063001
[40] F. Villaescusa-Navarro et al., 2020 The Quijote simulations, https://doi.org/10.3847/1538-4365/ab9d82 Astrophys. J. Suppl.250 2 [1909.05273] · doi:10.3847/1538-4365/ab9d82
[41] J. Lesgourgues, The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview, [1104.2932]
[42] VIRGO Consortium collaboration, 2003 Stable clustering, the halo model and nonlinear cosmological power spectra, https://doi.org/10.1046/j.1365-8711.2003.06503.x Mon. Not. Roy. Astron. Soc.341 1311 [astro-ph/0207664] · doi:10.1046/j.1365-8711.2003.06503.x
[43] S. Bird, M. Viel and M.G. Haehnelt, 2012 Massive Neutrinos and the Non-linear Matter Power Spectrum, https://doi.org/10.1111/j.1365-2966.2011.20222.x Mon. Not. Roy. Astron. Soc.420 2551 [1109.4416] · doi:10.1111/j.1365-2966.2011.20222.x
[44] R. Takahashi, M. Sato, T. Nishimichi, A. Taruya and M. Oguri, 2012 Revising the Halofit Model for the Nonlinear Matter Power Spectrum, https://doi.org/10.1088/0004-637X/761/2/152 Astrophys. J.761 152 [1208.2701] · doi:10.1088/0004-637X/761/2/152
[45] A. Mead, C. Heymans, L. Lombriser, J. Peacock, O. Steele and H. Winther, 2016 Accurate halo-model matter power spectra with dark energy, massive neutrinos and modified gravitational forces, https://doi.org/10.1093/mnras/stw681 Mon. Not. Roy. Astron. Soc.459 1468 [1602.02154] · doi:10.1093/mnras/stw681
[46] P.J.E. Peebles, 1980 The large-scale structure of the universe, Princeton University Press, · Zbl 1422.85005
[47] J.N. Fry, 1984 The galaxy correlation hierarchy in perturbation theory, https://doi.org/10.1086/161913 Astrophys. J.279 499 · doi:10.1086/161913
[48] H. Gil-Marín, C. Wagner, F. Fragkoudi, R. Jimenez and L. Verde, 2012 An improved fitting formula for the dark matter bispectrum J. Cosmol. Astropart. Phys.2012 02 047 [1111.4477]
[49] H. Gil-Marín, C. Wagner, J. Noreña, L. Verde and W. Percival, 2014 Dark matter and halo bispectrum in redshift space: theory and applications J. Cosmol. Astropart. Phys.2014 12 029 [1407.1836]
[50] E. Sefusatti, 2009 1-loop Perturbative Corrections to the Matter and Galaxy Bispectrum with non-Gaussian Initial Conditions, https://doi.org/10.1103/PhysRevD.80.123002 Phys. Rev. D80 123002 [0905.0717] · doi:10.1103/PhysRevD.80.123002
[51] D. Gualdi, M. Manera, B. Joachimi and O. Lahav, 2018 Maximal compression of the redshift space galaxy power spectrum and bispectrum, https://doi.org/10.1093/mnras/sty261 Mon. Not. Roy. Astron. Soc.476 4045 [1709.03600] · doi:10.1093/mnras/sty261
[52] N. Kaiser, 1987 Clustering in real space and in redshift space, https://doi.org/10.1093/mnras/227.1.1 Mon. Not. Roy. Astron. Soc.227 1 · doi:10.1093/mnras/227.1.1
[53] A.J.S. Hamilton, Linear redshift distortions: A Review, in Ringberg Workshop on Large Scale Structure, 1997, https://doi.org/10.1007/978-94-011-4960-0_17 [astro-ph/9708102]
[54] D. Jeong, 2010 Cosmology with high (z > 1) redshift galaxy surveys, Ph.D. Thesis, University of Texas at Austin, U.S.A.
[55] E. Sefusatti, M. Crocce, R. Scoccimarro and H. Couchman, 2016 Accurate Estimators of Correlation Functions in Fourier Space, https://doi.org/10.1093/mnras/stw1229 Mon. Not. Roy. Astron. Soc.460 3624 [1512.07295] · doi:10.1093/mnras/stw1229
[56] W.M. Gentleman and G. Sande, Fast fourier transforms: For fun and profit, in Proceedings of the November 7-10, 1966, Fall Joint Computer Conference, AFIPS ’66 (Fall), (New York, NY, U.S.A.), p. 563-578, Association for Computing Machinery, 1966, · doi:10.1145/1464291.1464352
[57] R. Scoccimarro, 2000 The bispectrum: from theory to observations, https://doi.org/10.1086/317248 Astrophys. J.544 597 [astro-ph/0004086] · doi:10.1086/317248
[58] R. Scoccimarro, 2015 Fast Estimators for Redshift-Space Clustering, https://doi.org/10.1103/PhysRevD.92.083532 Phys. Rev. D92 083532 [1506.02729] · doi:10.1103/PhysRevD.92.083532
[59] J. Tomlinson, D. Jeong and J. Kim, 2019 Efficient parallel algorithm for estimating higher-order polyspectra, https://doi.org/10.3847/1538-3881/ab3223 Astron. J.158 116 [1904.11055] · doi:10.3847/1538-3881/ab3223
[60] D. Gualdi and L. Verde, 2020 Galaxy redshift-space bispectrum: the Importance of Being Anisotropic J. Cosmol. Astropart. Phys.2020 06 041 [2003.12075]
[61] J. Hartlap, P. Simon and P. Schneider, 2007 Why your model parameter confidences might be too optimistic: Unbiased estimation of the inverse covariance matrix, https://doi.org/10.1051/0004-6361:20066170 Astron. Astrophys.464 399 [astro-ph/0608064] · doi:10.1051/0004-6361:20066170
[62] E. Sellentin and A.F. Heavens, 2016 Parameter inference with estimated covariance matrices, https://doi.org/10.1093/mnrasl/slv190 Mon. Not. Roy. Astron. Soc.456 L132 [1511.05969] · doi:10.1093/mnrasl/slv190
[63] N.S. Sugiyama, S. Saito, F. Beutler and H.-J. Seo, 2020 Perturbation theory approach to predict the covariance matrices of the galaxy power spectrum and bispectrum in redshift space, https://doi.org/10.1093/mnras/staa1940 Mon. Not. Roy. Astron. Soc.497 1684 [1908.06234] · doi:10.1093/mnras/staa1940
[64] D. Wadekar and R. Scoccimarro, 2020 Galaxy power spectrum multipoles covariance in perturbation theory, https://doi.org/10.1103/PhysRevD.102.123517 Phys. Rev. D102 123517 [1910.02914] · doi:10.1103/PhysRevD.102.123517
[65] D. Gualdi, H. Gil-Marín, R.L. Schuhmann, M. Manera, B. Joachimi and O. Lahav, 2019 Enhancing BOSS bispectrum cosmological constraints with maximal compression, https://doi.org/10.1093/mnras/stz051 Mon. Not. Roy. Astron. Soc.484 3713 [1806.02853] · doi:10.1093/mnras/stz051
[66] J.M. Bardeen, 1980 Gauge Invariant Cosmological Perturbations, https://doi.org/10.1103/PhysRevD.22.1882 Phys. Rev. D22 1882 · doi:10.1103/PhysRevD.22.1882
[67] N. Bartolo, E. Komatsu, S. Matarrese and A. Riotto, 2004 Non-Gaussianity from inflation: Theory and observations, https://doi.org/10.1016/j.physrep.2004.08.022 Phys. Rept.402 103 [astro-ph/0406398] · doi:10.1016/j.physrep.2004.08.022
[68] J.M. Maldacena, 2003 Non-Gaussian features of primordial fluctuations in single field inflationary models J. High Energy Phys. JHEP05(2003)013 [astro-ph/0210603]
[69] P. Creminelli and M. Zaldarriaga, 2004 Single field consistency relation for the 3-point function J. Cosmol. Astropart. Phys.2004 10 006 [astro-ph/0407059]
[70] N. Dalal, O. Dore, D. Huterer and A. Shirokov, 2008 The imprints of primordial non-Gaussianities on large-scale structure: scale dependent bias and abundance of virialized objects, https://doi.org/10.1103/PhysRevD.77.123514 Phys. Rev. D77 123514 [0710.4560] · doi:10.1103/PhysRevD.77.123514
[71] S. Matarrese and L. Verde, 2008 The effect of primordial non-Gaussianity on halo bias, https://doi.org/10.1086/587840 Astrophys. J. Lett.677 L77 [0801.4826] · doi:10.1086/587840
[72] A. Barreira, On the impact of galaxy bias uncertainties on primordial non-Gaussianity constraints, [2009.06622]
[73] E. Castorina et al., 2019 Redshift-weighted constraints on primordial non-Gaussianity from the clustering of the eBOSS DR14 quasars in Fourier space J. Cosmol. Astropart. Phys.2019 09 010 [1904.08859]
[74] L. Verde, L.-M. Wang, A. Heavens and M. Kamionkowski, 2000 Large scale structure, the cosmic microwave background, and primordial non-Gaussianity, https://doi.org/10.1046/j.1365-8711.2000.03191.x Mon. Not. Roy. Astron. Soc.313 L141 [astro-ph/9906301] · doi:10.1046/j.1365-8711.2000.03191.x
[75] E. Komatsu and D.N. Spergel, 2001 Acoustic signatures in the primary microwave background bispectrum, https://doi.org/10.1103/PhysRevD.63.063002 Phys. Rev. D63 063002 [astro-ph/0005036] · doi:10.1103/PhysRevD.63.063002
[76] D. Jeong and E. Komatsu, 2009 Primordial non-Gaussianity, scale-dependent bias, and the bispectrum of galaxies, https://doi.org/10.1088/0004-637X/703/2/1230 Astrophys. J.703 1230 [0904.0497] · doi:10.1088/0004-637X/703/2/1230
[77] R. Scoccimarro, E. Sefusatti and M. Zaldarriaga, 2004 Probing primordial non-Gaussianity with large-scale structure, https://doi.org/10.1103/PhysRevD.69.103513 Phys. Rev. D69 103513 [astro-ph/0312286] · doi:10.1103/PhysRevD.69.103513
[78] S. Mizuno and K. Koyama, 2010 Trispectrum estimator in equilateral type non-Gaussian models J. Cosmol. Astropart. Phys.2010 10 002 [1007.1462]
[79] M. Tegmark, A. Taylor and A. Heavens, 1997 Karhunen-Loeve eigenvalue problems in cosmology: How should we tackle large data sets?, https://doi.org/10.1086/303939 Astrophys. J.480 22 [astro-ph/9603021] · doi:10.1086/303939
[80] J. Carron, 2013 On the assumption of Gaussianity for cosmological two-point statistics and parameter dependent covariance matrices, https://doi.org/10.1051/0004-6361/201220538 Astron. Astrophys.551 A88 [1204.4724] · doi:10.1051/0004-6361/201220538
[81] B. Kalus, W.J. Percival and L. Samushia, 2016 Cosmological parameter inference from galaxy clustering: The effect of the posterior distribution of the power spectrum, https://doi.org/10.1093/mnras/stv2307 Mon. Not. Roy. Astron. Soc.455 2573 [1504.03979] · doi:10.1093/mnras/stv2307
[82] V. Springel and L. Hernquist, 2003 Cosmological SPH simulations: A hybrid multi-phase model for star formation, https://doi.org/10.1046/j.1365-8711.2003.06206.x Mon. Not. Roy. Astron. Soc.339 289 [astro-ph/0206393] · doi:10.1046/j.1365-8711.2003.06206.x
[83] M. Crocce, S. Pueblas and R. Scoccimarro, 2006 Transients from Initial Conditions in Cosmological Simulations, https://doi.org/10.1111/j.1365-2966.2006.11040.x Mon. Not. Roy. Astron. Soc.373 369 [astro-ph/0606505] · doi:10.1111/j.1365-2966.2006.11040.x
[84] R. Scoccimarro, L. Hui, M. Manera and K.C. Chan, 2012 Large-scale Bias and Efficient Generation of Initial Conditions for Non-Local Primordial Non-Gaussianity, https://doi.org/10.1103/PhysRevD.85.083002 Phys. Rev. D85 083002 [1108.5512] · doi:10.1103/PhysRevD.85.083002
[85] Planck collaboration, 2020 Planck 2018 results. VI. Cosmological parameters, https://doi.org/10.1051/0004-6361/201833910 Astron. Astrophys.641 A6 [1807.06209] · doi:10.1051/0004-6361/201833910
[86] E. Sefusatti, M. Crocce, S. Pueblas and R. Scoccimarro, 2006 Cosmology and the Bispectrum, https://doi.org/10.1103/PhysRevD.74.023522 Phys. Rev. D74 023522 [astro-ph/0604505] · doi:10.1103/PhysRevD.74.023522
[87] K.C. Chan and L. Blot, 2017 Assessment of the Information Content of the Power Spectrum and Bispectrum, https://doi.org/10.1103/PhysRevD.96.023528 Phys. Rev. D96 023528 [1610.06585] · doi:10.1103/PhysRevD.96.023528
[88] V. Yankelevich and C. Porciani, 2019 Cosmological information in the redshift-space bispectrum, https://doi.org/10.1093/mnras/sty3143 Mon. Not. Roy. Astron. Soc.483 2078 [1807.07076] · doi:10.1093/mnras/sty3143
[89] C. Hahn, F. Villaescusa-Navarro, E. Castorina and R. Scoccimarro, 2020 Constraining \(M_ν\) with the bispectrum. Part I. Breaking parameter degeneracies J. Cosmol. Astropart. Phys.2020 03 040 [1909.11107]
[90] N. Agarwal, V. Desjacques, D. Jeong and F. Schmidt, Information content in the redshift-space galaxy power spectrum and bispectrum, [2007.04340]
[91] J.C. Jackson, 1972 Fingers of God: A critique of Rees’ theory of primoridal gravitational radiation, https://doi.org/10.1093/mnras/156.1.1P Mon. Not. Roy. Astron. Soc.156 1P [0810.3908] · doi:10.1093/mnras/156.1.1P
[92] T. Giannantonio and C. Porciani, 2010 Structure formation from non-Gaussian initial conditions: multivariate biasing, statistics, and comparison with N-body simulations, https://doi.org/10.1103/PhysRevD.81.063530 Phys. Rev. D81 063530 [0911.0017] · doi:10.1103/PhysRevD.81.063530
[93] M. Tellarini, A.J. Ross, G. Tasinato and D. Wands, 2016 Galaxy bispectrum, primordial non-Gaussianity and redshift space distortions J. Cosmol. Astropart. Phys.2016 06 014 [1603.06814]
[94] E. Sefusatti, M. Crocce and V. Desjacques, 2012 The Halo Bispectrum in N-body Simulations with non-Gaussian Initial Conditions, https://doi.org/10.1111/j.1365-2966.2012.21271.x Mon. Not. Roy. Astron. Soc.425 2903 [1111.6966] · doi:10.1111/j.1365-2966.2012.21271.x
[95] T. Baldauf, U. Seljak and L. Senatore, 2011 Primordial non-Gaussianity in the Bispectrum of the Halo Density Field J. Cosmol. Astropart. Phys.2011 04 006 [1011.1513]
[96] M. Tellarini, A.J. Ross, G. Tasinato and D. Wands, 2015 Non-local bias in the halo bispectrum with primordial non-Gaussianity J. Cosmol. Astropart. Phys.2015 07 004 [1504.00324]
[97] D. Gualdi, H. Gil-Marín, M. Manera, B. Joachimi and O. Lahav, 2020 GEOMAX: beyond linear compression for three-point galaxy clustering statistics, https://doi.org/10.1093/mnras/staa1941 Mon. Not. Roy. Astron. Soc.497 776 [1912.01011] · doi:10.1093/mnras/staa1941
[98] D. Karagiannis, A. Lazanu, M. Liguori, A. Raccanelli, N. Bartolo and L. Verde, 2018 Constraining primordial non-Gaussianity with bispectrum and power spectrum from upcoming optical and radio surveys, https://doi.org/10.1093/mnras/sty1029 Mon. Not. Roy. Astron. Soc.478 1341 [1801.09280] · doi:10.1093/mnras/sty1029
[99] M.M. Abidi and T. Baldauf, 2018 Cubic Halo Bias in Eulerian and Lagrangian Space J. Cosmol. Astropart. Phys.2018 07 029 [1802.07622]
[100] H. Gil-Marín et al., 2015 The power spectrum and bispectrum of SDSS DR11 BOSS galaxies — I. Bias and gravity, https://doi.org/10.1093/mnras/stv961 Mon. Not. Roy. Astron. Soc.451 539 [1407.5668] · doi:10.1093/mnras/stv961
[101] M. Frigo and S. Johnson, 2005 The Design and Implementation of FFTW3, https://doi.org/10.1109/jproc.2004.840301 Proc. IEEE93 216 · doi:10.1109/jproc.2004.840301
[102] B. Joachimi, X. Shi and P. Schneider, 2009 Bispectrum covariance in the flat-sky limit, https://doi.org/10.1051/0004-6361/200912906 Astron. Astrophys.508 1193 [0907.2901] · Zbl 1183.85027 · doi:10.1051/0004-6361/200912906
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.